1

In the book Ensemble parfaits et séries trigonométriques, Kahane and Salem assert the following :

$\big\|\exp\big(ing(x)\big)\big\|_{A(\mathbb{T})}$ is $O(|n|)$ where $g \in C^\infty(\mathbb{T})$ is real-valued and $n \in \mathbb{N}$.

Here the $A(\mathbb{T})$-norm is of course the norm of the Wiener algebra of functions with absolutely convergent Fourier series.

How come this norm is $O(|n|)$ ?

M.G
  • 3,799

1 Answers1

0

Your claim is not true if $Im(g(x)) < 0$, in that case it grows exponentially. And if $Im(g(x))\ge 0$ I find $\mathcal{O}(k^2)$ :

$$\|f\|_{A(\mathbb{T})}= \sum_{n=-\infty}^\infty |c_n(f)|, \qquad \qquad c_n(f) = \int_0^{2\pi}f(x)e^{-i n x}dx$$

Also note that $$c_n(f')=i n c_n(f), \qquad\qquad c_n(f'')=-n^2 c_n(f)$$ With $G_k(x) = e^{ik g(x)}$ we have $G_k'(x) = ik g'(x)G_k(x)$ and $G_k''(x) = ik g''(x)G_k(x)-k^2g'(x)^2 G_k(x)$.

Assuming $Im(g(x))\ge 0$ we have $|G_k(x)|,|g(x)|,|g'(x)|,|g''(x)|$ bounded by a constant $\beta$, so that $|G_k''(x)|<k^2 \beta_2$,

and for $n \ne 0$ : $$|c_n(G_k)| = \frac{|c_n(G_k'')|}{ n^2} \le \frac{ k^2 \beta_2}{n^2}$$ with i.e.

$$\|G_k\|_{A(\mathbb{T})} = |c_1(G_K)|+\sum_{n\ne 0} |c_n(G_k)| \le 2\pi\beta+2\pi k^2 \beta_2\sum_{n\ne 0} \frac{1}{n^2}= \mathcal{O}(k^2)$$

reuns
  • 79,880