Let
$$f(x)=\sin\circ\cos(x)$$
Then your sequence is
$$\lim\limits_{n\to\infty} f^{\circ n}\vert_{x=x_0}=f\circ f\circ\cdots\circ(x_0)$$
and can be viewed as a fixed point problem. The contraction mapping theorem states that f is a contraction mapping on the interval $[a,b]$ if and only if
$$\forall_{x\in[a,b]}\left(\vert\vert Df(x)\vert\vert<1\right)$$
We have
$$\frac{d}{dx}f(x)=-\cos(\cos(x))\sin(x)$$
This achieves its maximum $1$ at
$$\frac{3\pi}{2}+2\pi k;\quad k\in\mathbb{N}$$
and minimum $-1$ at
$$\frac{\pi}{2}+2\pi k;\quad k\in\mathbb{N}$$
Thus $f$ is a contraction mapping with a unique fixed point on the open intervals
$$(\frac{\pi}{2}+2\pi k,\frac{3\pi}{2}+2\pi k);\quad k\in\mathbb{N}$$
where the magnitude of its derivative is bounded by $1$.
As the starting $x_0=0$ is clearly within the open interval, we check $x_1=f(x_0)$
$$\frac{3\pi}{2}-2\pi<f(0)=\sin(\cos(0))<\frac{\pi}{2}$$
thus the sequence evaluated at $x_0=0$ converges to a fixed point.
Now let
$$g(x)=\cos(\sin(x))$$
Then your sequence is
$$\lim\limits_{n\to\infty} \sin\circ g^{\circ n}\vert_{x=x_0}=\sin\circ g\circ g\circ\cdots\circ(x_0)$$
By noting $\sin(0)=0$ we see
$$\lim\limits_{n\to\infty} f^{\circ n}\vert_{x=0}=\lim\limits_{n\to\infty} \sin\circ g^{\circ n}\vert_{x=0}$$
These limits coincide, so the infinite sequence is well defined and converges to a unique fixed point
$$\lim\limits_{n\to\infty} f^{\circ n}\vert_{x_0=0}=0.694819690730788...$$