Here's Prob. 7, Sec. 20 in the book Topology by James R. Munkres, 2nd edition:
Consider the map $h \colon \mathbb{R}^\omega \to \mathbb{R}^\omega$ defined in Exercise 8 of Sec. 19; give $\mathbb{R}^\omega$ the uniform topology. Under what conditions on the numbers $a_i$ and $b_i$ is $h$ continuous? a homeomorphism?
Now here is Exercise 8 of Sec. 19:
Given sequences $\left( a_1, a_2, a_3, \ldots \right)$ and $\left( b_1, b_2, b_3, \ldots \right)$ of real numbers with $a_i > 0$ for all $i$, define $h \colon \mathbb{R}^\omega \to \mathbb{R}^\omega$ by the equation $$ h \left( \left( x_1, x_2, x_3, \ldots \right) \right) = \left( a_1 x_1 + b_1, a_2 x_2 + b_2, a_3 x_3 + b_3, \ldots \right).$$ Show that if $\mathbb{R}^\omega$ is given the product topology, $h$ is a homeomorphism of $\mathbb{R}^\omega$ with itself. What happens if $\mathbb{R}^\omega$ is given the box topology?
My effort:
For any $x, y \in \mathbb{R}^\omega$, we have $$ \tilde{\rho}(h(x), h(y) ) = \sup \left\{ \ \min \left\{ \ \left\vert a_n \right\vert \left\vert x_n - y_n \right\vert , 1 \right\} \ \colon \ n \in \mathbb{N} \ \right\}.$$ So if $\left\vert a_n \right\vert \leq 1$ for all $n \in \mathbb{N}$, then we obtain $$\tilde{\rho} ( h(x), h(y)) \leq \tilde{\rho}(x,y),$$ and so, given a real number $\varepsilon > 0$, if we take a real number $\delta$ such that $0 < \delta \leq \varepsilon$, then $$\tilde{\rho} ( h(x), h(y)) < \varepsilon$$ for all $x, y \in \mathbb{R}^\omega$ such that $$ \tilde{\rho}(x,y) < \delta.$$ Hence $h$ is uniformly continuous on $\mathbb{R}^\omega$. Am I right?
Now the inverse map $h^{-1} \colon \mathbb{R}^\omega \to \mathbb{R}^\omega$ is defined by $$ h^{-1}(x) = \left( \frac{x_1 - b_1}{a_1}, \frac{x_2 - b_2}{a_2}, \frac{x_3 - b_3}{a_3}, \ldots \right) $$ or $$ h^{-1}(x) = \left( \frac{1}{a_1} x_1 - \frac{b_1}{a_1}, \frac{1}{a_2} x_2 - \frac{b_2}{a_2}, \frac{1}{a_3} x_3 - \frac{b_3}{a_3}, \ldots \right) \ \ \ \mbox{ for all } \ x \colon= \left( x_1, x_2, x_3, \ldots \right) \in \mathbb{R}^\omega.$$ So, using what we have shown for $h$, we can conclude that, if $\left\vert a_n \right\vert \geq 1$ for all $n \in \mathbb{N}$, then $h^{-1}$ is uniformly continuous on $\mathbb{R}^\omega$. Am I right?
Therefore if $\left\vert a_n \right\vert = 1$ for all $n \in \mathbb{N}$, then $h$ is a homeomorphism. Am I right?
If what I've derived so far is correct, then does the converse of the above hold as well?
PS:
Here is my latest insight:
Suppose the sequence $\left( a_1, a_2, a_3, \ldots \right)$ is unbounded. Then for any natural number $k$, there is a natural number $n_k$ such that $$ a_{n_k} > k. \tag{0} $$ And, for any point $$\mathbf{x} \colon= \left( x_n \right)_{n \in \mathbb{N} }, $$ in $\mathbb{R}^\omega$, and, for any real number $\delta > 0$, if we put $$\mathbf{y} \colon= \left( x_n + \frac{\delta}{2} \right)_{n \in \mathbb{N}}, \tag{1} $$ then $$ \begin{align} \bar{\rho} ( \mathbf{x}, \mathbf{y} ) &= \sup \big\{ \ \min \left\{ \ \lvert x_n - y_n \rvert, \ 1 \ \right\} \ \colon \ n \in \mathbb{N} \ \big\} \\ &\leq \sup \big\{ \ \lvert x_n - y_n \rvert \ \colon \ n \in \mathbb{N} \ \big\} \\ &= \frac{\delta}{2} \\ &< \delta. \end{align} \tag{2} $$ And, if $N$ is a natural number such that $N > 2/\delta$, then we have $$ N \frac{\delta}{2} > 1, \tag{3} $$ and we see that $$ \begin{align} \bar{\rho} \big( h \left( \mathbf{x} \right) , h \left( \mathbf{y} \right) \big) &= \bar{\rho} \big( \left( a_n x_n + b_n \right)_{n \in \mathbb{N} }, \left( a_n x_n + b_n \right)_{n \in \mathbb{N} } \big) \\ &= \sup \big\{ \ \min \left\{ \ \left\lvert \left( a_n x_n + b_n \right) - \left( a_n y_n + b_n \right) \right\rvert, \ 1 \ \right\} \ \colon \ n \in \mathbb{N} \ \big\} \\ &= \sup \big\{ \ \min \left\{ \ \left\lvert a_n \right\rvert \left\lvert x_n - y_n \right\rvert , \ 1 \ \right\} \ \colon \ n \in \mathbb{N} \ \big\} \\ &= \sup \big\{ \ \min \left\{ \ a_n \left\lvert x_n - y_n \right\rvert , \ 1 \ \right\} \ \colon \ n \in \mathbb{N} \ \big\} \qquad \mbox{ [ because $a_n > 0$ for all $n$ ] } \\ &\geq \sup \big\{ \ \min \left\{ \ a_{n_k} \left\lvert x_{n_k} - y_{n_k} \right\rvert , \ 1 \ \right\} \ \colon \ k \in \mathbb{N} \ \big\} \\ &\geq \sup \big\{ \ \min \left\{ \ k \left\lvert x_{n_k} - y_{n_k} \right\rvert , \ 1 \ \right\} \ \colon \ k \in \mathbb{N} \ \big\} \qquad \mbox{ [ using (0) above ] } \\ &= \sup \left\{ \ \min \left\{ \ k \frac{\delta}{2} , \ 1 \ \right\} \ \colon \ k \in \mathbb{N} \ \right\} \qquad \mbox{ [ using (1) above ] } \\ &\geq \min \left\{ \ N \frac{\delta}{2} , \ 1 \ \right\} \\ &= 1 \qquad \mbox{ [ using (3) above ] } \\ &> \varepsilon \end{align} \tag{4} $$ whenever $\varepsilon$ is any real number such that $0 < \varepsilon < 1$.
Thus we have shown that if we take $\varepsilon \in (0, 1)$, then, for any real number $\delta > 0$, there is a point $\mathbf{y} \in \mathbb{R}^\omega$ such that $$ \bar{\rho} ( \mathbf{x}, \mathbf{y} ) < \delta, $$ but $$ \bar{\rho} \big( h \left( \mathbf{x} \right) , h \left( \mathbf{y} \right) \big) > \varepsilon. $$
Thus if the sequence $\left( a_n \right)_{n \in \mathbb{N} }$ is unbounded (from above), then the function $h$ cannot be continuous at any point $\mathbf{x}$ of $\mathbb{R}^\omega$.
So let us assume that the sequence $\left( a_n \right)_{n \in \mathbb{N} } $ is bounded (above). Then there is a positive real number $M$ such that $a_n < M$ for all $n$.
So, for any given real number $\varepsilon > 0$, if we take any real number $\delta$ such that $$ 0 < \delta < \min\left\{ \ \frac{\varepsilon}{2M}, \ 1 \ \right\}, $$ then for any points $\mathbf{x}$, $\mathbf{y}$ in $\mathbb{R}^\omega$ which satisfy $$ \bar{\rho}( \mathbf{x}, \mathbf{y} ) < \delta, $$ we see that for each $n \in \mathbb{N}$, we have the inequality $$ \min \left\{ \ \left\lvert x_n - y_n \right\rvert, \ 1 \ \right\} \leq \bar{\rho}(\mathbf{x}, \mathbf{y} ) < \delta < 1, $$ and so $$ \min \left\{ \ \left\lvert x_n - y_n \right\rvert, \ 1 \ \right\} = \left\lvert x_n - y_n \right\rvert, $$ and hence $$ \left\lvert x_n - y_n \right\rvert < \frac{\varepsilon}{2M}. $$ Therefore, $$ \begin{align} \bar{\rho}\left( h(\mathbf{x}), h(\mathbf{y}) \right) &= \sup \left\{ \ \min \left\{ \ a_n \left\lvert x_n - y_n \right\rvert, \ 1 \ \right\} \ \colon \ n \in \mathbb{N} \ \right\} \\ &\leq \sup \left\{ \ \min \left\{ \ M \left\lvert x_n - y_n \right\rvert, \ 1 \ \right\} \ \colon \ n \in \mathbb{N} \ \right\} \\ &\leq M \sup \left\{ \ \min \left\{ \ \left\lvert x_n - y_n \right\rvert, \ 1 \ \right\} \ \colon \ n \in \mathbb{N} \ \right\} \\ &= M \sup \left\{ \ \left\lvert x_n - y_n \right\rvert \ \colon \ n \in \mathbb{N} \ \right\} \\ &\leq M \frac{\varepsilon}{2M} \\ &= \frac{\varepsilon}{2} \\ &< \varepsilon. \end{align} $$ Hence $h$ is (uniformly) continuous (on all of $\mathbb{R}^\omega$).
Is this proof correct. If so, then is each and every step in it correct and clear enough? If not, then where lies the problem?