How to compute this limit: $\lim_\limits{n\to\infty} \sum_\limits{k=1}^n\frac{1}{1+3^k}$ or written as: $\lim\limits_{n\to\infty}(\frac{1}{1+3^1}+\frac{1}{1+3^2}+\frac{1}{1+3^3}+...+\frac{1}{1+3^n})$
this limit includes computing a summation of series: $\sum_\limits{k=1}^n\frac{1}{1+3^k}$ so that also arouses a more general question: how to compute a summation like $\sum_\limits{k=1}^n\frac{1}{1+a^k}$, where $a=2,3,...,$?