Is the following integration correct?
Consider the integral $\int_{-\pi}^\pi \frac{\cos(x)}{5+\sin(x)^2} dx$. Substitute $y = \sin(x)$ then we have $\frac{dy}{dx} = \cos(x)$ and hence $dy = \cos(x) dx$ and we get
$$\int_{-\pi}^\pi \frac{\cos(x)}{5+\sin(x)^2}dx = \int_{\sin(-\pi)}^{\sin(\pi)} \frac{1}{5+y^2}dy = \int_{0}^{0} \frac{1}{5+y^2}dy = 0.$$
The substitution seems a bit odd, but the result $0$ is correct. Thanks in advance :)