Let $ (G,\cdot,e) $ be a group, and suppose that there are a $ \sigma $-ring $ \Sigma $ on $ G $ and a measure $ \mu: \Sigma \to [0,\infty] $, non-trivial, such that the following properties hold:
- $ \Sigma $ is left-invariant w.r.t. $ \cdot $, i.e., $ x \cdot S \in \Sigma $ for every $ x \in G $ and $ S \in \Sigma $.
- $ \mu $ is left-invariant w.r.t. $ \cdot $, i.e., $ \mu(x \cdot S) = \mu(S) $ for every $ x \in G $ and $ S \in \Sigma $.
- The map $ \left\{ \begin{matrix} G \times G & \to & G \times G \\ (x,y) & \mapsto & (x,x \cdot y) \end{matrix} \right\} $ is $ (\Sigma \times \Sigma,\Sigma \times \Sigma) $-measurable.
- For each $ x \in G \setminus \{ e \} $, there exists an $ S \in \Sigma $ with $$ 0 < \mu(S) < \infty \qquad \text{and} \qquad 0 < \mu((x \cdot S) \triangle S) < \infty, $$ where $ \triangle $ denotes the symmetric difference of sets.
Then Weil’s converse to Haar’s Theorem states that there exists a topological group $ ((G',\bullet,e),\tau) $ with the following properties:
- $ \tau $ is a locally compact and Hausdorff group topology on $ G' $.
- $ (G,\cdot,e) $ is a subgroup of $ (G',\bullet,e) $, so that $ G \subseteq G' $ and $ \cdot = \bullet|_{G \times G} $.
- If $ \mathscr{B} $ denotes the $ \sigma $-ring on $ G' $ generated by the $ G_{\delta} $ compact (w.r.t. $ \tau $) subsets of $ G' $, then $$ \{ B \cap G \in \mathcal{P}(G) \mid B \in \mathscr{B} \} \subseteq \Sigma. $$ Note: We call $ \mathscr{B} $ the $ \tau $-induced Baire $ \sigma $-ring on $ G' $.
- There exists a (Baire) Haar measure $ \mu': \mathscr{B} \to [0,\infty] $, associated with $ ((G',\bullet,e),\tau) $, such that $$ \forall B \in \mathscr{B}: \qquad \mu(B \cap G) = \mu'(B). $$ This implies that $ G $ is a $ \mu' $-thick subset of $ G' $, as $ B \in \mathscr{B} $ and $ B \cap G = \varnothing $ imply $ \mu'(B) = 0 $.
The version of Weil’s result presented here is taken from Halmos’s Measure Theory, which is rather antiquated but still remains a classic.
Now, I would like to determine if one can simply replace every instance of ‘$ \sigma $-ring’ by ‘$ \sigma $-algebra’, as well as replace all Baire $ \sigma $-rings by Borel $ \sigma $-algebras, i.e., $ \sigma $-algebras on a set that are generated by a given locally compact and Hausdorff topology.
Could someone kindly provide an authoritative reference to aid my query? Thank you very much!