Given a system of linear equations:
$$(S):\begin{cases} a_1x+b_1y+c_1z=d_1\\ a_2x+b_2y+c_2z=d_2\\ a_3x+b_3y+c_3z=d_3 \end{cases}$$
And we use matrix to represent:
$$\left( \begin{array}{ccc|c} a_1 & b_1 & c_1 & x\\ a_2 & b_2 & c_2 & y\\ a_3 & b_3 & c_3 & z\\ \end{array}\right)= \begin{pmatrix} d_1\\ d_2\\ d_3\\ \end{pmatrix} $$Let $$M=\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \\ \end{pmatrix}$$
$$\begin{pmatrix} x\\ y\\ z\\ \end{pmatrix}=M^{-1}\begin{pmatrix} d_1\\ d_2\\ d_3\\ \end{pmatrix}$$
For (S) to have a unique solution, $det M\ne0$, and no solution for $det M=0$
But I am wondering why $det M=0$ also implies it has infinity many solution.