20

Let $\{x,y,z\}\subset[-1,1]$ such that $x+y+z=0$. Prove that: $$\sqrt{1+x+\frac{y^2}{6}}+\sqrt{1+y+\frac{z^2}{6}}+\sqrt{1+z+\frac{x^2}{6}}\leq3$$ I tried C-S, but without success.

I found this problem here, posted in artofproblemsolving (2009). I think it came from some test or some contest for school students.

hardmath
  • 37,715
  • 1
    Nice question. Is this from a competition? For me, the most natural thing to do is to apply Jensen's inequality to the square root function, but unfortunately this only shows that the left hand side is less than approx 3.24. ie not quite strong enough. – S. Catterall Oct 22 '16 at 15:13
  • @MichaelRozenberg do you happen to remember where the question is from? Even what level (high school/college) the question comes from? If it's college it seems like some ugly work with derivatives/gradients might let you show that $x=y=z=0$ is a maximum on the domain. – Mathily Oct 24 '16 at 15:56
  • @ Mathily I found this problem here:http://www.artofproblemsolving.com/community/c6h284076 I think it from some test or some contest for school students. – Michael Rozenberg Oct 24 '16 at 16:16
  • @MichaelRozenberg, suppose that I able to show that the inequality under the condition $x+y+z=0$ has the form $x^2+y^2+z^2 \leq 0$. Can one argue that since $x^2+y^2+z^2 \leq 0$ iff $x=y=z=0$ which holds under the condition, completes the proof? My guess is, that it isn't. – Salech Alhasov Jan 27 '18 at 01:02
  • No, you can not. I think it's very strange to assume that $x^2+y^2+z^2\leq0$. Why not $x=y=z=0$? For these numbers the inequality is true and we still need to prove the starting inequality. – Michael Rozenberg Jan 27 '18 at 06:49
  • 6
    Discussion of this question on meta, https://math.meta.stackexchange.com/questions/37659/a-almost-8-years-old-question-was-closed-just-after-i-added-a-new-answer-to-it – Gerry Myerson Aug 06 '24 at 07:31

3 Answers3

9

Let $Z = \{\,(x,y,z) \in [-1,1]^3 \mid x+y+z=0\,\}$.

Let $f \colon Z \rightarrow \mathbb{R}$ be the function given by $$f(x,y,z) = \sqrt{1+x+\frac{y^2}{6}} + \sqrt{1+y+\frac{z^2}{6}} + \sqrt{1+z+\frac{x^2}{6}}.$$

Let $g \colon \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function given by \begin{align*} g(x,y) =\ &x^4+2 x^3 y-2 x^3+3 x^2 y^2+9 x^2 y+4 x^2 \\ &+2 x y^3+15 x y^2+4 x y+y^4+2 y^3+4 y^2. \end{align*}

Lemma 1. If $(x,y,z) \in Z$ and $g(x,y) \geq 0$, then $f(x,y,z) \leq 3$.

Proof. Let $(x,y,z) \in Z$ such that $g(x,y) \geq 0$. Define $\lambda_1 = \frac{x+2}{6}$, $\lambda_2 = \frac{y+2}{6}$ and $\lambda_3 = \frac{z+2}{6}$. We have $\lambda_1,\lambda_2,\lambda_3 \geq 0$ and $\lambda_1+\lambda_2+\lambda_3=1$. Since $\alpha \mapsto \sqrt{\alpha}$ is concave, we have by Jensen's inequality: \begin{align*} f(x,y,z) &= \sqrt{1+x+\frac{y^2}{6}} + \sqrt{1+y+\frac{z^2}{6}} + \sqrt{1+z+\frac{x^2}{6}} \\ &= \lambda_1 \sqrt{\frac{6 x+y^2+6}{6 \lambda_1 ^2}} + \lambda_2 \sqrt{\frac{6 y+z^2+6}{6 \lambda_2 ^2}} + \lambda_3 \sqrt{\frac{6 z+x^2+6}{6 \lambda_3 ^2}} \\ &\leq \sqrt{ \lambda_1 \frac{6 x+y^2+6}{6 \lambda_1 ^2} + \lambda_2 \frac{6 y+z^2+6}{6 \lambda_2 ^2} + \lambda_3 \frac{6 z+x^2+6}{6 \lambda_3 ^2}} \\ &= \sqrt{ \frac{6 x+y^2+6}{x+2} + \frac{6 y+z^2+6}{y+2} + \frac{6 z+x^2+6}{z+2}}. \end{align*} We rewrite the fractions inside the square root to have the same denominator and then replace $z$ with $-x-y$: \begin{align*} &(9 - f(x,y,z)^2) (x+2) (y+2) (z+2) \\&\geq \left(9-\frac{6 x+y^2+6}{x+2} - \frac{6 y+z^2+6}{y+2} - \frac{6 z+x^2+6}{z+2}\right) (x+2) (y+2) (z+2) \\&= g(x,y) \geq 0. \end{align*} $$\tag*{$\Box$}$$

Let $\widetilde{Z} = \{\,(x,y,z) \in Z \mid z \leq x \land z \leq y\,\}$.

Lemma 2. If $(x,y,z) \in \widetilde{Z}$, then $-3 x^2+6 x+4 y \geq 0$.

Proof. Let $(x,y,z) \in \widetilde{Z}$. If $x \geq 0$, then we have: \begin{align*} -3 x^2+6 x+4 y &= 3x(1+(1-x))+4 y \\&\geq 3x+4y \\&\geq 2x+4y \\&\geq 2x+2y+2z = 0. \end{align*} If $x < 0$, then we have: \begin{align*} -3 x^2+6 x+4 y &= -3x^2 -2x + 4y + 8x \\&\geq -3x^2 -2x + 4y + 4x + 4z \\&= -x(3x+2) \\&\geq -2x(2x+1) \\&\geq -2x(x+z+1) \\&= -2x(-y+1) \geq 0. \end{align*} $$\tag*{$\Box$}$$

Let $\widetilde{g} \colon \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function given by \begin{align*} \widetilde{g}(x,y) &= g(x,y)-y^2(-3 x^2+6 x+4 y)-2 (1-x) (1-y) (x+y)^2 \\ &= x^4 + 2 x^2 y^2 + y^4 + 15 x^2 y + 15 x y^2 + 2 x^2 + 2 y^2. \end{align*}

Corollary 2.1. If $(x,y,z) \in \widetilde{Z}$ and $\widetilde{g}(x,y) \geq 0$, then $g(x,y) \geq 0$ and by Lemma 1 we have $f(x,y,z) \leq 3$.

Let $\hat{Z} = \{\,(x,y,z) \in \widetilde{Z} \mid x > 0\,\}$.

Let $\hat{g} \colon \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function given by \begin{align*} \hat{g}(x,y) &= \frac{1}{x}\left(\widetilde{g}(x,y)-(1 - x) (2 y^2 + y^4) - x y^4\right) \\ &= x^3+2 x y^2+15 x y+2 x+17 y^2 \\ &= (17+2x) y^2 + 15 x y + x^3 + 2 x. \end{align*}

Lemma 3. If $\hat{g}(x,y) \geq 0$ for all $(x,y,z) \in \hat{Z}$, then $f(x,y,z) \leq 3$ for all $(x,y,z) \in Z$.

Proof. Let $(x,y,z) \in Z$.

Then there exists $(\widetilde{x},\widetilde{y},\widetilde{z}) \in \{\,(x,y,z),(y,z,x),(z,x,y)\,\} \cap \widetilde{Z}$.

If $\widetilde{x} = \widetilde{y} = \widetilde{z} = 0$, then $f(x,y,z) = f(0,0,0) = 3$.

If $\widetilde{z} < 0$, then there exists $(\hat{x},\hat{y},\hat{z}) \in \{\,(\widetilde{x},\widetilde{y},\widetilde{z}), (\widetilde{y},\widetilde{x},\widetilde{z})\,\} \cap \hat{Z}$.

Since $\hat{g}(\hat{x},\hat{y}) \geq 0$ and $\hat{x} > 0$, we have $\widetilde{g}(\hat{x},\hat{y}) \geq 0$ by the definition of $\hat{g}$. Hence $\widetilde{g}(\widetilde{x},\widetilde{y}) = \widetilde{g}(\hat{x},\hat{y}) \geq 0$. By Corollary 2.1 we have $ f(\widetilde{x},\widetilde{y},\widetilde{z}) \leq 3$, hence $f(x,y,z) = f(\widetilde{x},\widetilde{y},\widetilde{z}) \leq 3$. $$\tag*{$\Box$}$$

Lemma 4. If $(x,y,z) \in \hat{Z}$, then $\hat{g}(x,y) > 0$.

Proof. Let $(x,y,z) \in \hat{Z}$. The function $\mu \mapsto \hat{g}(x,\mu)$ is quadratic with $17+2x > 0, 15x > 0$, therefore it has a minimum point at $\mu = -\frac{15x}{34+4x}$.

Let $h \colon [0,1] \rightarrow \mathbb{R}$ be the function given by \begin{align*} h(\lambda) &= \frac{4 (17 + 2 \lambda)}{\lambda} \cdot \hat{g}(\lambda, -\frac{15\lambda}{34+4\lambda}) \\&= 8 \lambda^3+68 \lambda^2-209 \lambda+136. \end{align*} We have $h'(\lambda) = 24 \lambda^2+136 \lambda-209 < 0$ for all $\lambda \in [0,1]$. Therefore, $h$ is monotonically decreasing. Since $h(1) = 3$, $h$ is positive.

We have: \begin{align*} \hat{g}(x,y) &\geq \hat{g}(x, -\frac{15x}{34+4x}) \\&= \frac{x}{4 (17 + 2 x)} \cdot h(x) \\&> 0. \end{align*} $$\tag*{$\Box$}$$

Corollary 4.1. By Lemma 3 and Lemma 4, we have that $f(x,y,z) \leq 3$ for all $(x,y,z) \in Z$.

cafaxo
  • 657
8

@cafaxo gave a nice approach to eliminate the root signs. Let $\lambda_1 = \frac{2+x}{6}, \ \lambda_2 = \frac{2+y}{6}, \ \lambda_3 = \frac{2+z}{6}.$ It holds that $\lambda_1, \lambda_2, \lambda_3 > 0; \ \lambda_1 + \lambda_2 + \lambda_3 = 1.$ Note that $t\mapsto \sqrt{t}, \ t \ge 0$ is concave. @cafaxo obtained \begin{align*} &\sqrt{1 + x + \frac{y^2}{6}} + \sqrt{1 + y + \frac{z^2}{6}} + \sqrt{1 + z + \frac{x^2}{6}}\\ =\ & \lambda_1 \sqrt{\frac{1 + x + \frac{y^2}{6}}{\lambda_1^2}} + \lambda_2 \sqrt{\frac{1 + y + \frac{z^2}{6}}{\lambda_2^2}} + \lambda_3 \sqrt{\frac{1 + z + \frac{x^2}{6}}{\lambda_3^2}}\\ \le \ & \sqrt{\frac{1 + x + \frac{y^2}{6}}{\lambda_1} + \frac{1 + y + \frac{z^2}{6}}{\lambda_2} + \frac{1 + z + \frac{x^2}{6}}{\lambda_3}}\\ = \ & \sqrt{\frac{6 + 6x + y^2}{2+x} + \frac{6 + 6y + z^2}{2+y} + \frac{6 + 6z + x^2}{2+z}}. \end{align*} It suffices to prove that $$\frac{6 + 6x + y^2}{2+x} + \frac{6 + 6y + z^2}{2+y} + \frac{6 + 6z + x^2}{2+z} \le 9.$$ Using $z = -x-y$, after clearing the denominators, it suffices to prove that, for all $x, y \in [-1, 1]$ with $-1 \le x + y \le 1$, \begin{align*} &x^4+2 x^3 y+3 x^2 y^2+2 x y^3+y^4-2 x^3+9 x^2 y+15 x y^2+2 y^3\\ &\quad +4 x^2+4 x y+4 y^2 \ge 0. \tag{1} \end{align*}

Alternative proof of (1).

It suffices to prove that (1) is true for all $x, y \le 1$ with $x + y \ge -1$. Letting $x = 1 - a, y = 1 - b$, it suffices to prove that, for all $a, b \ge 0$ with $a + b \le 3$, \begin{align*} &{a}^{4}+2\,{a}^{3}b+3\,{a}^{2}{b}^{2}+2\,a{b}^{3}+{b}^{4}-4\,{a}^{3}- 21\,{a}^{2}b-27\,a{b}^{2}-8\,{b}^{3}\\ &\qquad +22\,{a}^{2}+76\,ab+40\,{b}^{2}-57 \,a-75\,b+45 \ge 0. \tag{2} \end{align*} Letting $c = 3 - a - b$, it suffices to prove that (2) is true for all $a, b, c \ge 0$ with $a + b + c = 3$. After homogenization, it suffices to prove that, for all $a, b, c \ge 0$, \begin{align*} &{a}^{4}+2\,{a}^{3}b+3\,{a}^{2}{b}^{2}+2\,a{b}^{3}+{b}^{4}-4\,{a}^{3}Q - 21\,{a}^{2}b Q -27\,a{b}^{2}Q-8\,{b}^{3}Q\\ &\qquad +22\,{a}^{2}Q^2+76\,abQ^2+40\,{b}^{2}Q^2-57 \,aQ^3 - 75\,bQ^3 + 45Q^4 \ge 0 \tag{3} \end{align*} where $Q := (a + b + c)/3$. From (3), it suffices to prove that, for all $a, b, c \ge 0$, \begin{align*} &5\,{a}^{4}+{a}^{3}b-5\,{a}^{3}c-5\,{a}^{2}{b}^{2}+4\,{a}^{2}bc-5\,{a}^ {2}{c}^{2}-5\,a{b}^{3}+4\,a{b}^{2}c\\ &\qquad +4\,ab{c}^{2}+a{c}^{3}+5\,{b}^{4}+{ b}^{3}c-5\,{b}^{2}{c}^{2}-5\,b{c}^{3}+5\,{c}^{4} \ge 0. \tag{4} \end{align*}

If $c = \min(a, b, c)$, letting $a = c + s, b = c + t$ for $s, t\ge 0$, (4) is written as \begin{align*} &\left( 12\,{s}^{2}-12\,st+12\,{t}^{2} \right) {c}^{2}+ \left( 16\,{s} ^{3}-3\,{s}^{2}t-21\,s{t}^{2}+16\,{t}^{3} \right) c\\ &\qquad +5\,{s}^{4}+{s}^{3} t-5\,{s}^{2}{t}^{2}-5\,s{t}^{3}+5\,{t}^{4} \ge 0 \end{align*} which is true since $ 12\,{s}^{2}-12\,st+12\,{t}^{2} \ge 0$ and $16\,{s} ^{3}-3\,{s}^{2}t-21\,s{t}^{2}+16\,{t}^{3} \ge 0$ and $5\,{s}^{4}+{s}^{3} t-5\,{s}^{2}{t}^{2}-5\,s{t}^{3}+5\,{t}^{4} \ge 0$ (easy).

Similarly, we can prove the case that $b = \min(a, b, c)$ and $a = \min(a, b, c)$.

We are done.

River Li
  • 49,125
3

@cafaxo gave a nice method to eliminate the root signs. Let $\lambda_1 = \frac{2+x}{6}, \ \lambda_2 = \frac{2+y}{6}, \ \lambda_3 = \frac{2+z}{6}.$ It holds that $\lambda_1, \lambda_2, \lambda_3 > 0; \ \lambda_1 + \lambda_2 + \lambda_3 = 1.$ Note that $t\mapsto \sqrt{t}, \ t \ge 0$ is concave. @cafaxo obtained \begin{align} &\sqrt{1 + x + \frac{y^2}{6}} + \sqrt{1 + y + \frac{z^2}{6}} + \sqrt{1 + z + \frac{x^2}{6}}\\ =\ & \lambda_1 \sqrt{\frac{1 + x + \frac{y^2}{6}}{\lambda_1^2}} + \lambda_2 \sqrt{\frac{1 + y + \frac{z^2}{6}}{\lambda_2^2}} + \lambda_3 \sqrt{\frac{1 + z + \frac{x^2}{6}}{\lambda_3^2}}\\ \le \ & \sqrt{\frac{1 + x + \frac{y^2}{6}}{\lambda_1} + \frac{1 + y + \frac{z^2}{6}}{\lambda_2} + \frac{1 + z + \frac{x^2}{6}}{\lambda_3}}\\ = \ & \sqrt{\frac{6 + 6x + y^2}{2+x} + \frac{6 + 6y + z^2}{2+y} + \frac{6 + 6z + x^2}{2+z}}. \end{align} It suffices to prove that $$\frac{6 + 6x + y^2}{2+x} + \frac{6 + 6y + z^2}{2+y} + \frac{6 + 6z + x^2}{2+z} \le 9$$ or (noting that $z = -x-y$) \begin{align} &x^4+2 x^3 y+3 x^2 y^2+2 x y^3+y^4-2 x^3+9 x^2 y+15 x y^2+2 y^3\\ &\quad +4 x^2+4 x y+4 y^2 \ge 0 \tag{1} \end{align} for $x, y\in [-1, 1]; \ -1\le x + y \le 1.$

My solution

Let me give a different method to prove (1).

With computer, here is a SOS (Sum of Squares) solution:

(1) is true since (note: $A_1, A_2, A_3, A_4$ are all positive semidefinite) \begin{align} &x^4+2 x^3 y+3 x^2 y^2+2 x y^3+y^4-2 x^3+9 x^2 y+15 x y^2+2 y^3+4 x^2+4 x y+4 y^2\\ =\ & \frac{1}{60}\Big[u^TA_1u + (1-x)u^TA_2u + (1-y)u^TA_3u + (x+y+1)u^TA_4u\Big] \end{align} where $$u = \left(\begin{array}{c} x\\ y\\ x^2\\ xy\\ y^2 \end{array}\right), $$ $$ A_1 = \left(\begin{array}{ccccc} 140 & 80 & -30 & 165 & 120\\ 80 & 150 & 55 & 230 & 51\\ -30 & 55 & 60 & 60 & -40\\ 165 & 230 & 60 & 380 & 120\\ 120 & 51 & -40 & 120 & 108 \end{array}\right), \quad A_2 = \left(\begin{array}{ccccc} 80 & 0 & 0 & 0 & 40\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 40 & 0 & 0 & 0 & 20 \end{array}\right), $$ $$A_3 = \left(\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0\\ 0 & 10 & 0 & 0 & 14\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ 0 & 14 & 0 & 0 & 20 \end{array}\right), \quad A_4 = \left(\begin{array}{ccccc} 20 & 40 & 0 & 0 & -20\\ 40 & 80 & 0 & 0 & -40\\ 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0\\ -20 & -40 & 0 & 0 & 20 \end{array}\right).$$

River Li
  • 49,125