Let $Z = \{\,(x,y,z) \in [-1,1]^3 \mid x+y+z=0\,\}$.
Let $f \colon Z \rightarrow \mathbb{R}$ be the function given by
$$f(x,y,z) = \sqrt{1+x+\frac{y^2}{6}} + \sqrt{1+y+\frac{z^2}{6}} + \sqrt{1+z+\frac{x^2}{6}}.$$
Let $g \colon \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function given by
\begin{align*}
g(x,y) =\ &x^4+2 x^3 y-2 x^3+3 x^2 y^2+9 x^2 y+4 x^2
\\ &+2 x y^3+15 x y^2+4 x y+y^4+2 y^3+4 y^2.
\end{align*}
Lemma 1. If $(x,y,z) \in Z$ and $g(x,y) \geq 0$, then $f(x,y,z) \leq 3$.
Proof.
Let $(x,y,z) \in Z$ such that $g(x,y) \geq 0$. Define $\lambda_1 = \frac{x+2}{6}$, $\lambda_2 = \frac{y+2}{6}$ and $\lambda_3 = \frac{z+2}{6}$.
We have $\lambda_1,\lambda_2,\lambda_3 \geq 0$ and $\lambda_1+\lambda_2+\lambda_3=1$. Since $\alpha \mapsto \sqrt{\alpha}$ is concave, we have by Jensen's inequality:
\begin{align*}
f(x,y,z) &= \sqrt{1+x+\frac{y^2}{6}} + \sqrt{1+y+\frac{z^2}{6}} + \sqrt{1+z+\frac{x^2}{6}}
\\ &=
\lambda_1 \sqrt{\frac{6 x+y^2+6}{6 \lambda_1 ^2}}
+ \lambda_2 \sqrt{\frac{6 y+z^2+6}{6 \lambda_2 ^2}}
+ \lambda_3 \sqrt{\frac{6 z+x^2+6}{6 \lambda_3 ^2}}
\\ &\leq
\sqrt{ \lambda_1 \frac{6 x+y^2+6}{6 \lambda_1 ^2}
+ \lambda_2 \frac{6 y+z^2+6}{6 \lambda_2 ^2}
+ \lambda_3 \frac{6 z+x^2+6}{6 \lambda_3 ^2}}
\\ &=
\sqrt{ \frac{6 x+y^2+6}{x+2}
+ \frac{6 y+z^2+6}{y+2}
+ \frac{6 z+x^2+6}{z+2}}.
\end{align*}
We rewrite the fractions inside the square root to have the same denominator and then replace $z$ with $-x-y$:
\begin{align*}
&(9 - f(x,y,z)^2) (x+2) (y+2) (z+2) \\&\geq \left(9-\frac{6 x+y^2+6}{x+2}
- \frac{6 y+z^2+6}{y+2}
- \frac{6 z+x^2+6}{z+2}\right) (x+2) (y+2) (z+2)
\\&= g(x,y) \geq 0.
\end{align*}
$$\tag*{$\Box$}$$
Let $\widetilde{Z} = \{\,(x,y,z) \in Z \mid z \leq x \land z \leq y\,\}$.
Lemma 2. If $(x,y,z) \in \widetilde{Z}$, then $-3 x^2+6 x+4 y \geq 0$.
Proof.
Let $(x,y,z) \in \widetilde{Z}$. If $x \geq 0$, then we have:
\begin{align*}
-3 x^2+6 x+4 y &= 3x(1+(1-x))+4 y
\\&\geq 3x+4y
\\&\geq 2x+4y
\\&\geq 2x+2y+2z = 0.
\end{align*}
If $x < 0$, then we have:
\begin{align*}
-3 x^2+6 x+4 y &= -3x^2 -2x + 4y + 8x
\\&\geq -3x^2 -2x + 4y + 4x + 4z
\\&= -x(3x+2)
\\&\geq -2x(2x+1)
\\&\geq -2x(x+z+1)
\\&= -2x(-y+1) \geq 0.
\end{align*}
$$\tag*{$\Box$}$$
Let $\widetilde{g} \colon \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function given by
\begin{align*}
\widetilde{g}(x,y) &= g(x,y)-y^2(-3 x^2+6 x+4 y)-2 (1-x) (1-y) (x+y)^2
\\ &= x^4 + 2 x^2 y^2 + y^4 + 15 x^2 y + 15 x y^2 + 2 x^2 + 2 y^2.
\end{align*}
Corollary 2.1. If $(x,y,z) \in \widetilde{Z}$ and $\widetilde{g}(x,y) \geq 0$, then $g(x,y) \geq 0$ and by Lemma 1 we have $f(x,y,z) \leq 3$.
Let $\hat{Z} = \{\,(x,y,z) \in \widetilde{Z} \mid x > 0\,\}$.
Let $\hat{g} \colon \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function given by
\begin{align*}
\hat{g}(x,y) &= \frac{1}{x}\left(\widetilde{g}(x,y)-(1 - x) (2 y^2 + y^4) - x y^4\right)
\\ &= x^3+2 x y^2+15 x y+2 x+17 y^2
\\ &= (17+2x) y^2 + 15 x y + x^3 + 2 x.
\end{align*}
Lemma 3. If $\hat{g}(x,y) \geq 0$ for all $(x,y,z) \in \hat{Z}$, then $f(x,y,z) \leq 3$ for all $(x,y,z) \in Z$.
Proof.
Let $(x,y,z) \in Z$.
Then there exists $(\widetilde{x},\widetilde{y},\widetilde{z}) \in \{\,(x,y,z),(y,z,x),(z,x,y)\,\} \cap \widetilde{Z}$.
If $\widetilde{x} = \widetilde{y} = \widetilde{z} = 0$, then $f(x,y,z) = f(0,0,0) = 3$.
If $\widetilde{z} < 0$, then there exists $(\hat{x},\hat{y},\hat{z}) \in \{\,(\widetilde{x},\widetilde{y},\widetilde{z}), (\widetilde{y},\widetilde{x},\widetilde{z})\,\} \cap \hat{Z}$.
Since $\hat{g}(\hat{x},\hat{y}) \geq 0$ and $\hat{x} > 0$, we have $\widetilde{g}(\hat{x},\hat{y}) \geq 0$ by the definition of $\hat{g}$. Hence $\widetilde{g}(\widetilde{x},\widetilde{y}) = \widetilde{g}(\hat{x},\hat{y}) \geq 0$.
By Corollary 2.1 we have $ f(\widetilde{x},\widetilde{y},\widetilde{z}) \leq 3$, hence $f(x,y,z) = f(\widetilde{x},\widetilde{y},\widetilde{z}) \leq 3$.
$$\tag*{$\Box$}$$
Lemma 4. If $(x,y,z) \in \hat{Z}$, then $\hat{g}(x,y) > 0$.
Proof.
Let $(x,y,z) \in \hat{Z}$. The function $\mu \mapsto \hat{g}(x,\mu)$ is quadratic with $17+2x > 0, 15x > 0$, therefore it has a minimum point at $\mu = -\frac{15x}{34+4x}$.
Let $h \colon [0,1] \rightarrow \mathbb{R}$ be the function given by
\begin{align*}
h(\lambda)
&= \frac{4 (17 + 2 \lambda)}{\lambda} \cdot \hat{g}(\lambda, -\frac{15\lambda}{34+4\lambda})
\\&= 8 \lambda^3+68 \lambda^2-209 \lambda+136.
\end{align*}
We have $h'(\lambda) = 24 \lambda^2+136 \lambda-209 < 0$ for all $\lambda \in [0,1]$. Therefore, $h$ is monotonically decreasing. Since $h(1) = 3$, $h$ is positive.
We have:
\begin{align*}
\hat{g}(x,y)
&\geq \hat{g}(x, -\frac{15x}{34+4x})
\\&= \frac{x}{4 (17 + 2 x)} \cdot h(x)
\\&> 0.
\end{align*}
$$\tag*{$\Box$}$$
Corollary 4.1. By Lemma 3 and Lemma 4, we have that $f(x,y,z) \leq 3$ for all $(x,y,z) \in Z$.