1

We have $x, y, z \in \mathbb R$ such that $x+y+z=1$. Prove that $x^2+y^2+z^2 \geq \frac{1}{3}$. I am able to do this using the relationship between the power and arithmetic means. Is there a way to not use this relationship?

Zelazny
  • 2,549

3 Answers3

3

Hint: $(x-\frac13)^2 + (y-\frac13)^2 + (z-\frac13)^2 \geq 0$.

user133281
  • 16,341
2

We have $$ x+y+z=1\\ (x+y+z)^2=1\\ x^2+y^2+z^2+2(xy+xz+yz)=1 $$ By the rearrangement inequality, $x^2+y^2+z^2\geq xy+xz+yz$. Inserting that gives you $$ 3(x^2+y^2+z^2)\geq1 $$

Arthur
  • 204,511
1

For any real numbers $x,y,z$, we have

$$\begin{align} 0\le(x-y)^2+(y-z)^2+(z-x)^2&\implies2(xy+yz+zx)\le2(x^2+y^2+z^2)\\ &\implies(x+y+z)^2\le3(x^2+y^2+z^2) \end{align}$$

So if $x+y+z=1$, then ${1\over3}\le x^2+y^2+z^2$.

Barry Cipra
  • 81,321