Find out the area in percentage under standard normal distribution curve of random variable $Z$ within limits from $-3$ to $3$.
my try: probability density function of standard normal distribution is $f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$
now the area under standard normal distribution curve ($-3\le x\le3$),
$$=\frac{1}{\sqrt{2\pi}}\int_{-3}^3e^{-\frac{x^2}{2}}\ dx$$
$$=2\frac{1}{\sqrt{2\pi}}\int_{0}^3e^{-\frac{x^2}{2}}\ dx$$
$$=-\frac{2}{\sqrt{2\pi}}\int_{0}^3e^{-\frac{x^2}{2}}\ dx$$
$$=-\frac{2}{\sqrt{2\pi}}\left(\int_{0}^{\infty}e^{-\frac{x^2}{2}}\ dx-\int_{3}^{\infty}e^{-\frac{x^2}{2}}\ dx\right)$$
$$=-\frac{2}{\sqrt{2\pi}}\left(\frac 12-\int_{3}^{\infty}e^{-\frac{x^2}{2}}\ dx\right)$$
i got stuck here, i don't have any clue to solve above integral. please help me to solve it or give some other method to find the area under the curve.
