$\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{equation}
\sum_{k = -m}^{n}{m + k \choose r}{n - k \choose s} =
{m + n + 1 \choose r + s + 1}:\ {\large ?}
\label{1}\tag{1}
\end{equation}
LHS variables must satisfy
$\left\{\begin{array}{rcl}
\ds{m + k \geq r \geq 0} & \ds{\implies} &
\left\{\begin{array}{l}
\ds{r \geq 0 }
\\[2mm]
\ds{k \geq r - m \geq -m}
\end{array}\right.
\\[1mm]
\ds{n - k \geq s \geq 0} & \ds{\implies} &
\left\{\begin{array}{l}
\ds{s \geq 0 }
\\[2mm]
\ds{k \leq n - s \leq n}
\end{array}\right.
\end{array}\right.$
Then,
\begin{align}
&\color{#f00}{\sum_{k = -m}^{n}{m + k \choose r}{n - k \choose s}} =
\sum_{k = r - m}^{n - s}{m + k \choose r}{n - k \choose s} =
\sum_{k = r - m}^{\infty}{m + k \choose r}{n - k \choose s}
\\[5mm] = &\
\sum_{k = 0}^{\infty}{m + \pars{k + r - m} \choose r}
{n - \pars{k + r - m} \choose s} =
\sum_{k = 0}^{\infty}{k + r \choose k}
{m + n - r - k \choose m + n - r - k - s}
\\[5mm] = &\
\sum_{k = 0}^{\infty}{-r - 1 \choose k}\pars{-1}^{k}
{-s - 1 \choose m + n - r - s - k}\pars{-1}^{m + n - r - s - k}
\\[5mm] = &\
\pars{-1}^{m + n + r + s}\sum_{k = 0}^{\infty}{-r - 1 \choose k}
\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{-s - 1} \over z^{m + n - r - s - k + 1}}
\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\pars{-1}^{m + n + r + s}
\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{-s - 1} \over z^{m + n - r - s + 1}}
\sum_{k = 0}^{\infty}{-r - 1 \choose k}z^{k}\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\pars{-1}^{m + n + r + s}
\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{-s - 1} \over z^{m + n - r - s + 1}}
\pars{1 + z}^{-r - 1}\,{\dd z \over 2\pi\ic}
\\[5mm] = &\
\pars{-1}^{m + n + r + s}
\oint_{\verts{z} = 1^{-}}{\pars{1 + z}^{-s - 1 - r - 1} \over
z^{m + n - r - s + 1}}\,{\dd z \over 2\pi\ic} =
\pars{-1}^{m + n + r + s}{-s - r - 2 \choose m + n - r - s}
\\[5mm] = &\
\pars{-1}^{m + n + r + s}{s + r + 2 + m + n - r - s - 1 \choose m + n - r - s}
\pars{-1}^{m + n - r - s}
\\[5mm] = &\
{m + n + 1 \choose m + n - r - s} =
{m + n + 1 \choose \bracks{m + n + 1} - \bracks{m + n - r - s}} =
\color{#f00}{m + n + 1 \choose r + s + 1}
\end{align}