Let $G = GL_2 (\mathbb {R} $).
Show that $T$ = {$ \begin{bmatrix} a & b \\ 0 & d \\ \end{bmatrix}$ | ad $\neq 0$ } is a subgroup of $G$
My attempt:
det$(TT^{-1})$ = det$(T)$ det($T^{-1})$ = det($T$) $1$/det($T$) = $ad$ $(1/ad)$= $1$. We are done by subgroup test