prove that $$\frac{|x+y|}{1+|x+y|}\le\frac{|x|}{1+|x|}+\frac{|y|}{1+|y|} $$
To solve this I assumed if $x,y$ are of opposite signs and $x\gt y$ then $|x+y|\le |x|$.
we get
$$\frac{|x|}{1+|x|}\ge\frac{|x+y|}{1+|x+y|}$$
how to proceed further..
as answered by hans
to prove that the function $$f(x)=\frac{x}{1+x}$$ is monotonous ,$y\ge x$ then
$$\frac{1}{1+y}\le\frac{1}{1+x}$$
$$1-\frac{1}{1+y}\ge 1-\frac{1}{1+x}$$
$$\frac{y}{1+y}\ge\frac{x}{1+x}$$
further $|x+y|\le|x|+|y|$ and using the above inequality
One gets
$$\frac{|x|+|y|}{1+|x|+|y|}\ge\frac{|x+y|}{1+|x+y|}$$