In attempting to solve $\lim_{x\to0}x^x$, I tried two different approaches. One is to convert $x^x$ into a complex function and solve the limit in $\mathbb{C}$. The other is to take the limit of the points of the dense sets in $\mathbb{R}^{-}$ and $\mathbb{R}^{+}$.
According to this article, $\lim_{x\to0}{x}^{x}$ can be converted into $\lim_{x\to{0}}|x|^{x}(\cos((2n+1)\pi x)+i\sin((2n+1)\pi x)$ where $n\in\mathbb{N}$ are the branches of complex logarithm.
This leads to $$\lim_{x\to0}{|x|}^{x}\lim_{x\to0}\cos((2n+1)\pi x)+i\lim_{x\to0}|x|^{x}\lim_{x\to0}\sin((2n+1)\pi x)=1$$
So using complex analysis $\lim_{x\to0}{x^x}=1$
However, if we take the points on real axis, where x-values of the complex function of $|x|^{x}(\cos((2n+1)\pi x)+i\sin((2n+1)\pi x)=a+0i$ (see this graph), we have the following domain. $$\left\{x=\left.-\frac{m}{2k+1}\right|m,k\in\mathbb{N}\right\}\bigcup{\mathbb{R}^{+}}$$
Which is divided into
$$x^x=\begin{cases} x^x & x>0\\ |x|^x & x=\left\{ -{2m\over 2k+1}\ |\ m, k \in \Bbb N\right\}\\ -|x|^{x} & x=\left\{ -{2m+1\over 2k+1}\ |\ m, k \in \Bbb N\right\}\ \\ \text{undefined} & x=\left\{ -{2m+1\over 2k}\ |\ m, k \in \Bbb N\right\}\bigcup \left\{\mathbb{R}^{-}\backslash \mathbb{Q}^{-}\right\} \end{cases}$$
Since $\left.-\frac{2m+1}{2k+1}\right|m,k \in \mathbb{N}$ and $\left.-\frac{2m}{2k+1}\right|m,k \in \mathbb{N}$ are dense sets; they can approximate arbitrarily close to any $x\in{\mathbb{R}}^{-}$. Thus a limit can exist if the subsets converge to the same value.
Hence $\lim_{x\to0}x^x$ exists if
$$\lim_{\left\{x\in-\frac{2m+1}{2k+1}\right\}\to0^{-}}x^x=\lim_{\left\{x\in-\frac{2m}{2k+1}\right\}\to0^{-}}x^x=\lim_{x\to0^{+}}{x^x}$$
Which is the same as
$$\lim_{x\to0^{-}}-|x|^x=\lim_{x\to0^{-}}|x|^x=\lim_{x\to0^{+}}x^x$$
However this equality fails since $\lim_{x\to0^{-}}-|x|^x=-1$ and the other limit are equal to $1$.
So using real analysis, $\lim_{x\to0}x^x$ does not exist.
I believe that the limit should be the same by real or complex analysis but I am no expert in either feild.
Did I do both approaches correctly? Does my answer depend on which analysis I use?