$$\int_{0}^{\infty}\tan\left(\frac{1}{\sqrt{x+1}}\right)\frac{\log\left(1+\sqrt{x}\right)}{x}\,dx$$
$\frac{x}{\sqrt{x^3+x^2}}=\frac{1}{\sqrt{x+1}}, \quad x>0$
$$z=\sqrt{x},\quad x=z^2,\quad dx=2z\,dz,\quad z\in \mathbb{C}$$
Our contour will be a semicircle $\Gamma_R$ paremeterized by $z=Re^{i \theta}, 0\leqslant \theta \leqslant \pi$
$$\frac{1}{\sqrt{z^2+1}}=\frac{\pi}{2}+n\pi, \quad \sqrt{z^2+1}=\frac{2}{\pi\left(1+2n\right)}, \quad z^2+1=\frac{4}{\pi^2\left(4n^2+4n+1\right)},\quad z=\pm\frac{\sqrt{4-\pi^2\left(4n^2+4n+1\right)}}{\pi\left(1+2n\right)},\quad z_n=\Im\frac{\sqrt{\pi^2\left(1+2n\right)^2-4}}{\pi\left|1+2n\right|}\,\text{ for } n\geqslant0$$
$w\left(z\right)=e^{-\frac{1}{2}\log\left(z^2+1\right)}$
$$\lim_{R\to\infty}\oint_{\Gamma_R}\tan\left(w\left(z\right)\right)\frac{\log\left(1+z\right)}{z}\,dz= 2\pi\Im\,\text{res}\left(f;z_n\right)$$
$$\text{res}\left(f;z_n\right)= \sum_{n\geqslant 0}\frac{\log\left(z_n\right)}{z_n}$$
$$\int_{0}^{\infty}\tan\left(\frac{1}{\sqrt{x+1}}\right)\frac{\log\left(1+\sqrt{x}\right)}{x}\,dx = \Re\left[\pi \Im \sum_{n\geqslant 0}\frac{\log\left(z_n\right)}{z_n}\right]$$