Is there a general way to find the $q > 0$ solving the equation from the geometric series $$1+q+q^2+q^3+\ldots + q^n = a$$ or $$\frac{1-q^{n+1}}{1-q} = a\quad\text{with } q \neq 1$$ for $a > 1$ and $n\in\mathbb N$?
My thoughts: Since polynomials aren't solvable in general for degree 5 or higher, I guess the above equation has no explicit solution for $n\ge 5$. In this case numerical approximations can be used. For $n=5$ also this method can be used.