Let $\pmb{M} \in \mathbb{C}^{N \times N}$ be a square symmetric matrix be partitioned as follows: \begin{equation} \pmb{M} = \left[ \begin{array}{c|c} \pmb{A} & \pmb{b} \\ \hline \pmb{b}^{\text{H}} & \beta \end{array} \right] \end{equation} where $\pmb{A} \in \mathbb{C}^{(N-1) \times (N-1)}$, $\pmb{b} \in \mathbb{C}^{(N-1) \times 1}$ and $\beta$ is a scalar.
Now, $\pmb{A}$ is invertible but the Schur complement of $\pmb{A}$ in $\pmb{M}$ is zero, namely
\begin{equation} \pmb{M}/\pmb{A} = \beta - \pmb{b}^{\text{H}}\pmb{A}^{-1}\pmb{b} = 0 \end{equation}
How can I compute a "pseudo-block-inverse" of $\pmb{M}$ in terms of $\pmb{A}$, $\pmb{b}$ and $\beta$?
Thanks a lot.