If one simplifies the infinite nested radical $$\sqrt{x+\sqrt{x^2+\sqrt{x^4+\sqrt{x^8+\dots}}}}$$
Does one get $$\sqrt x\frac{1+\sqrt5}2$$ Any help would be appreciated!
If one simplifies the infinite nested radical $$\sqrt{x+\sqrt{x^2+\sqrt{x^4+\sqrt{x^8+\dots}}}}$$
Does one get $$\sqrt x\frac{1+\sqrt5}2$$ Any help would be appreciated!
$$\sqrt{x+\sqrt{x^2+\sqrt{x^4+\sqrt{x^8+\dots}}}}=\sqrt{x+x\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}}$$ $$\sqrt{x+x\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}}=\sqrt{x}\sqrt{1+1\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}}$$ now let
$$y=\sqrt{1+1\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}}$$ so $$y^2-1=y$$ $$y=\frac{1\pm\sqrt{5}}{2}$$ select the $$y=\frac{1+\sqrt{5}}{2}$$
You have
$$\sqrt{x+\sqrt{x^2+\sqrt{x^4+\sqrt{x^8+\dots}}}}$$ $$ = \sqrt{x+x\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}}$$ $$ = \sqrt{x}\sqrt{1+1\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}}$$
The continued square root $\sqrt{1+1\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}}$ is a well known form of $\phi = \frac{\sqrt{5}+1}{2}$ (see here) and so you end up with:
$$ \frac{\sqrt{x}(\sqrt{5}+1)}{2}$$ as required.