Hint $\ \overbrace{(x^2\!-x+1)(\color{#0a0}{x^2\!+x+1}) = x^4\!+x^2\!+1}^{\textstyle \qquad\qquad\ \ \, {\rm i.e}\ \ \, \color{#0a0}{f_n}\ \mid\ f_{n+1} } \,$ $\,\overset{\rm induct}\Longrightarrow f_0\mid f_n,\ \forall \ n \ge 0\,\ $ $[\,f_0\! =\! 7\,$ in OP]
Note $ $ We can discover the factor(ization) $\,f_{n}\mid f_{n+1}$ in many ways, e.g. by completing the square (see comment below) or, more simply and generally, by the method of simpler multiples
$$x^2+x+1\,\ {\rm divides}\!\!\!\!\!\!\!\!\!\!\!\!\!\overbrace{\color{#0a0}{x^{\rm\large 2+\color{#c00}3\:\!J}}+x^{\rm\large 1+\color{#c00}3\:\!K}+\color{#90f}{x^{\rm\large \color{#c00}3L^{\phantom{|}}\!}}}^{\textstyle {\rm e.g.\ }\,\ \ \,\ \color{#0a0}{x^2}\ \ +\,\ \ x^4\ \ \ +\ \ \ \color{#90f}{x^0}\ \ {\rm in\ OP}\, \ \ \ }\qquad\qquad\ \ \,$$
Here it's simply $\ x^2+x+1\equiv 0\overset{\times\,(x-1)}\Longrightarrow\,$ $\color{#c00}{x^3\equiv 1}\,\Rightarrow \underbrace{\color{#c00}{x^4}\!}_{\!\!\Large \equiv\:\!\ \color{#c00}x}\!+x^2+1\equiv 0$
Note that this way eliminates need to compute the quotient (cofactor) $\,f_{n+1}/f_n = x^2-x+1,\,$ since the proof needs only the remainder $\,f_{n+1}\bmod f_n = 0.\,$ This is typical of simplification that modular/congruence arithmetic yields in such contexts.