EDIT: The question is edited after an error pointed out by gerw.
There are the following two results regarding weak convergence in $\ell^p$ spaces:
Let $((\beta_n^{(\alpha)}))_{\alpha \in I} \subseteq \ell_p (\mathbb{N})$ be a net and $(\beta_n) \in \ell_p (\mathbb{N})$, where $1 < p < \infty$. Then
(i). $\beta_n^{(\alpha)} \to \beta_n$ for each $n \in \mathbb{N}$ whenever $(\beta_n^{(\alpha)}) \xrightarrow[]{w} (\beta_n)$.
(ii). $(\beta_n^{(\alpha)}) \xrightarrow[]{w} (\beta_n)$ whenever the net $((\beta_n^{(\alpha)}))_{\alpha \in I}$ is bounded and $\beta_n^{(\alpha)} \to \beta_n$ for each $n \in \mathbb{N}$
Unfortunately I am not able to prove both implications. Any help is highly appreciated.