$$\int \sqrt{\cot x}{dx}$$ $$\int \sqrt{\frac{\cos x}{\sin x}}{dx} $$ Using half angle formula $$\int \sqrt{\frac{1-\tan^2 \frac{x}{2}}{2\tan \frac{x}{2}}}{dx}$$ But I am not getting any lead from here .I think it is not possible to integrate $\sqrt{\cot x}$ by hand .
I calculated the result with the help of integral calculator $$\dfrac{\ln\left(\left|\tan\left(x\right)+\sqrt{2}\sqrt{\tan\left(x\right)}+1\right|\right)-\ln\left(\left|\tan\left(x\right)-\sqrt{2}\sqrt{\tan\left(x\right)}+1\right|\right)+2\arctan\left(\frac{2\sqrt{\tan\left(x\right)}+\sqrt{2}}{\sqrt{2}}\right)+2\arctan\left(\frac{2\sqrt{\tan\left(x\right)}-\sqrt{2}}{\sqrt{2}}\right)}{2^\frac{3}{2}}$$