This definitely won't be an easy task to provide a complete answer. I will try to figure out some points from my applications. Sorry to be messy...
It might be the simplest way to utilize Bernoulli's inequality to prove the Weight-Power Summation Inequalities ($a_i,b_i>0$, $i\in\{1,\cdots,n\}$)
\begin{align}
\sum_{i=1}^n \frac{a_i^{m+1}}{b_i^m}&\ge\frac{\left(\sum_{i=1}^n a_i\right)^{m+1}}{\left(\sum_{i=1}^nb_i\right)^m},\;m<-1\text{ or }m>0
\end{align} or
\begin{align}
\sum_{i=1}^n \frac{a_i^{m+1}}{b_i^m}&\le\frac{\left(\sum_{i=1}^n a_i\right)^{m+1}}{\left(\sum_{i=1}^n b_i\right)^m},\;-1\le m\le0\label{eq:Weight-PowerSum-1<m<0}
\end{align}
To prove a lot of simple/important inequalities like $n-1+x^n\ge nx$ or $x^{n+1}+ny^{n+1}\ge(n+1)xy^{n}$ for $n\ge0$ and $x,y>0$,
$x^y+y^x>1$ for $x,y>0$,
By chance, I found this post might be part of the answer.
Especially the generalized version to Item 2:
$$\frac{1-\frac{1}{x^n}}{n}\le x-1\le\frac{x^n-1}{n}.$$
One example for test can be shown in GeoGebra.