If $f(x)$ any even function, integrable on $(0,\infty)$ and $g(x)$ any odd function, then we have:
$$\int_{- \infty}^{\infty} \frac{f(x)}{1+e^{g(x)}}dx=\int_{0}^{\infty} f(x) dx \tag{1}$$
The proof is elementary:
$$I(a)=\int_{- \infty}^{\infty} \frac{f(x)}{a+e^{g(x)}}dx$$
$$I(1/a)=\int_{- \infty}^{\infty} \frac{f(x)}{1/a+e^{g(x)}}dx=a \int_{- \infty}^{\infty} \frac{e^{-g(x)}f(x)}{e^{-g(x)}+a}dx= \\ = a \int_{- \infty}^{\infty} f(x)dx-a^2\int_{- \infty}^{\infty} \frac{f(x)}{a+e^{g(x)}}dx$$
$$\frac{1}{a} I(1/a)+aI(a)=\int_{- \infty}^{\infty} f(x)dx$$
$$I(1)=\int_{0}^{\infty} f(x)dx$$
With this formula we can write some crazy looking integrals to scare people, like:
$$\int_{- \infty}^{\infty} \frac{e^{-x^2}}{1+e^{\sin (\sinh x)+x^3-\arctan x}}dx=\frac{\sqrt{\pi}}{2}$$
To be fair, it might also be useful for some quatum statistics applications (i.e. Fermi-Dirac distribution).
I want to know, what other formulas like $(1)$ exist? Maybe with the exponential function, or some other functions
I also know of Glasser's Theorem, but I wonder if some more interesting cases exist.
To be more specific, I mean the non-trivial formulas of the following kind:
$$\int_{a}^b g(x) f(x) dx=k \int_{A}^B f(x) dx$$
With $k$ being some constant, independent on $f(x)$, $f(x)$ is a general function (with some restricitions), $g(x)$ is some interesting function. $A,B$ might be different from $a,b$, but also should not depend on $f(x)$.