Sasha's answer is so nice. I want to offer other way.
Other way
Let $\alpha\in \mathbb{R}^+$. It is well known that $X_t=\exp\left(\alpha W_t-\frac{1}{2}\alpha^2 t\right)$ is a martingale, therefore
$$\mathbb{E}[X_{T_{a,b}}]=\mathbb{E}[X_0]=1$$
so
$$\mathbb{E}[X_{T_{a,b}}]=\mathbb{E}\left[\exp\left(\alpha W_{T_{a,b}}-\frac{1}{2}\alpha^2 T_{a,b}\right)\right]=1$$
set $t=T_{a,b}$, we have $W_{T_{a,b}}=a+bT_{a,b}$ and
$$\mathbb{E}\left[e^{\large{(\alpha b-\frac{1}{2}\alpha^2)T_{a,b}}}\right]=e^{-\alpha\,a}$$
define $\lambda=-\alpha b+\frac{1}{2}\alpha^2$, we have $\alpha=b+\sqrt{b^2+2\lambda}$. Hence
$$\mathbb{E}\left[e^{\large{-\lambda T_{a,b}}}\right]=e^{-a\,(b+\sqrt{b^2+2\lambda}\,)}$$
By differentiating with respect $\lambda$, we have
$$\mathbb{E}\left[T_{a,b}e^{\large{-\lambda T_{a,b}}}\right]=\frac{a}{\sqrt{b^2+2\lambda}}e^{-a\,(b+\sqrt{b^2+2\lambda}\,)}$$
Now let $\lambda=0$
$$\color{green}{\mathbb{E}\left[T_{a,b}\right]=\frac{a}{b}e^{-2ab}}$$