1

Can you help me with this exercise?

Find the nearest point to the origin $(0,0,0)$ in the line given by the intersection of planes $x+y+z=2$ and $12x+3y+3z=12$.

The intersection of the planes is the line : $x=2/3$, $3y+3z=4$. So I restrict the function $f(x,y,z)=x^2+y^2+z^2$ to the set $A=\{x=2/3, 3y+3z=4\}$. Let $g(y,z)=f(2/3,y,z)=4/9+y^2+z^2$.

So the problem is equivalent to find the maximum of $g(y,z)=4/9+y^2+z^2$ restricted to $h(y,z)=3y+3z-4=0$. Using Lagrange multipliers, I get

$(2y,2z)=\lambda(3,3)$,

$3y+3z=4$

By the first equation I get $y=z$, then in the second I get $6y=4$, so $y=2/3$, therefore $z=2/3$. This is why I get $x=y=z=2/3$. Is it better now?

Thanks

John
  • 206
  • This is really hard to make sense of. Could you try rewriting the question more clearly? – Kurt Jul 20 '16 at 20:38
  • This problem is easy to solve by parameterizing the line and minimizing distance as a function of one variable, but presumably the exercise was meant to familiarize you with using Lagrange multipliers to achieve the same end. As written, your Question doesn't really illustrate that you've done this. – hardmath Jul 20 '16 at 20:41
  • Thanks for your answer, would you mind telling me if it is ok now? – John Jul 20 '16 at 20:53
  • I get the same thing. – André Nicolas Jul 20 '16 at 20:54
  • Thank you André, Im having problems with these kind of exercices, do you know a good book for getting better with this? Thank you!! – John Jul 20 '16 at 21:01

3 Answers3

1

$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{\mathrm{i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,\mathrm{Li}_{#1}} \newcommand{\ol}[1]{\overline{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$

Lets $$ \vec{r} \equiv \pars{x,y,z}\,,\quad \vec{a} \equiv \pars{1,1,1}\,,\quad \vec{b} \equiv \pars{4,1,1}\,,\quad \mbox{Note that}\ \vec{r}\cdot\vec{a} = 2\ \mbox{and}\ \vec{r}\cdot\vec{b} = 4 $$

'Lagrange': $\ds{\half\,\vec{r}\cdot\vec{r} - \mu\vec{r}\cdot\vec{a} - \nu\vec{r}\cdot\vec{b}}$:

\begin{align} &\vec{r} - \mu\vec{a} - \nu\vec{b} = 0\quad\imp\quad \mu\vec{a} + \nu\vec{b} = \vec{r}\quad\imp\quad \left\lbrace\begin{array}{rcrcl} \ds{a^{2}\,\mu} & \ds{+} & \ds{\vec{a}\cdot\vec{b}\,\nu} & \ds{=} & \ds{2} \\ \ds{\vec{a}\cdot\vec{b}\,\mu} & \ds{+} & \ds{b^{2}\,\nu} & \ds{=} & \ds{4} \end{array}\right. \\[4mm] &\ \imp\quad\left.\begin{array}{rcrcl} \ds{3\mu} & \ds{+} & \ds{6\nu} & \ds{=} & \ds{2} \\ \ds{3\mu} & \ds{+} & \ds{9\nu} & \ds{=} & \ds{2} \end{array}\right\rbrace\quad\imp\quad \mu = {2 \over 3}\,,\quad\nu = 0 \end{align}


$$ \vec{r} = \mu\vec{a} = {2 \over 3}\pars{1,1,1} = \pars{{2 \over 3},{2 \over 3},{2 \over 3}}\quad\imp \color{#f00}{x} = \color{#f00}{y} = \color{#f00}{z} = \color{#f00}{2 \over 3} $$
Felix Marin
  • 94,079
1

This is an instance of the least-norm problem

$$\begin{array}{ll} \text{minimize} & \| {\bf x} \|_2^2\\ \text{subject to} & {\bf A} {\bf x} = {\bf b} \end{array}$$

As $2 \times 3$ matrix $\bf A$ has full row rank, the least-norm solution is

$$ {\bf x}_{\text{LN}} := {\bf A}^\top \left( {\bf A} {\bf A}^\top \right)^{-1} {\bf b} $$

In SymPy:

>>> A = Matrix([[1, 1, 1], [12, 3, 3]])
>>> A
⎡1   1  1⎤
⎢        ⎥
⎣12  3  3⎦
>>> b = Matrix([2, 12])
>>> b
⎡2 ⎤
⎢  ⎥
⎣12⎦
>>> x_LN = A.T * (A * A.T)**-1 * b
>>> x_LN
⎡2/3⎤
⎢   ⎥
⎢2/3⎥
⎢   ⎥
⎣2/3⎦

Appendix

We can use Lagrange multipliers to find the least-norm solution. We define the Lagrangian

$$\mathcal{L} ({\bf x}, {\bf \lambda}) := \frac 12 {\bf x}^\top {\bf x} - {\bf \lambda}^\top ({\bf A} {\bf x} - {\bf b})$$

Taking the partial derivatives and finding where they vanish, we obtain

$$ {\bf x} = {\bf A}^\top {\bf \lambda}, \qquad \qquad {\bf A} {\bf x} = {\bf b} $$

from which it is easy to compute the least-norm solution, assuming that $\bf A$ has full row rank (so that $\bf A \bf A^\top$ is invertible).

0

You could even solve the problem using basic calculus since minimizing the distance is the same as minimizing the square of the distance.

The constraints being $$x+y+z=2\qquad , \qquad 12x+3y+3z=12$$ take advantage of their linearity and solve these two equations for $x$ and $z$ as functions of $y$. Tou will get $x=\frac 23$ and $z=\frac 43-y$.

So $$d^2=x^2+y^2+z^2=\frac{4}{9}+y^2+\left(\frac{4}{3}-y\right)^2=2 y^2-\frac{8 y}{3}+\frac{20}{9}$$ The derivative $(d^2)'=4y-\frac 83$ cancel for $y=\frac 23$ and, using $z=\frac 43-y$, $z=\frac 23$.

Then the solution $x=y=z=\frac 23$ and $d^2=\frac 43$.

Notice that the second derivative test $(d^2)''=4y$ confirms that this is a minimum.