$\newcommand{\angles}[1]{\left\langle\,{#1}\,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,\mathrm{Li}_{#1}}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Lets
$$
\vec{r} \equiv \pars{x,y,z}\,,\quad
\vec{a} \equiv \pars{1,1,1}\,,\quad
\vec{b} \equiv \pars{4,1,1}\,,\quad
\mbox{Note that}\ \vec{r}\cdot\vec{a} = 2\ \mbox{and}\ \vec{r}\cdot\vec{b} = 4
$$
'Lagrange': $\ds{\half\,\vec{r}\cdot\vec{r} - \mu\vec{r}\cdot\vec{a} - \nu\vec{r}\cdot\vec{b}}$:
\begin{align}
&\vec{r} - \mu\vec{a} - \nu\vec{b} = 0\quad\imp\quad
\mu\vec{a} + \nu\vec{b} = \vec{r}\quad\imp\quad
\left\lbrace\begin{array}{rcrcl}
\ds{a^{2}\,\mu} & \ds{+} & \ds{\vec{a}\cdot\vec{b}\,\nu} & \ds{=} & \ds{2}
\\
\ds{\vec{a}\cdot\vec{b}\,\mu} & \ds{+} & \ds{b^{2}\,\nu} & \ds{=} & \ds{4}
\end{array}\right.
\\[4mm] &\
\imp\quad\left.\begin{array}{rcrcl}
\ds{3\mu} & \ds{+} & \ds{6\nu} & \ds{=} & \ds{2}
\\
\ds{3\mu} & \ds{+} & \ds{9\nu} & \ds{=} & \ds{2}
\end{array}\right\rbrace\quad\imp\quad \mu = {2 \over 3}\,,\quad\nu = 0
\end{align}
$$
\vec{r} = \mu\vec{a} = {2 \over 3}\pars{1,1,1} = \pars{{2 \over 3},{2 \over 3},{2 \over 3}}\quad\imp
\color{#f00}{x} = \color{#f00}{y} = \color{#f00}{z} = \color{#f00}{2 \over 3}
$$