Deny. $ $ Then $\ \color{darkorange}{m\mid 2n}\ $ by $\,\ 2^{\color{darkorange}m}\!-\!1\mid 2^n\!+\!1\mid 2^{\color{darkorange}{2n}}\!-\!1.\ $ Note that $\ \color{#c00}2 = {\color{#0a0}{2^n\!+\!1-(2^n\!-\!1)}}\ $ so
$2\nmid m\ \ \,\Rightarrow\,\ \ \color{darkorange}{m\mid n} \ \,\Rightarrow\,\ 2^m\!-\!1\mid \color{#0a0}{2^n\!+\!1,\,2^n\!-\!1} \ \Rightarrow\,\ 2^m\!-\!1\mid\color{#c00}2 \,\Rightarrow\, m=1,\ $ else
$2\mid m\,\Rightarrow\, \color{darkorange}{m/2\mid n}\, \Rightarrow\!\!\!\!\! \underbrace{2^{m/2}\!\!-\!1\mid \color{#0a0}{2^n\!+\!1}}_{\Large 2^{\Large m/2}-1\mid 2^{\Large m}-1\mid 2^{\Large n}+1 }\!\!\!\!\!\!, \color{#0a0}{2^n\!-\!1} \Rightarrow 2^{m/2}\!-\!1\mid\color{#c00}2 \,\Rightarrow\, m=2,\: $ contra $\ m>2$.