Let $X$ be a topological space. By Universal Coefficient Theorem for Homology we have the exact sequence $$0\to H_i(X;\mathbb Z)\otimes\mathbb Z_2\to H_i(X;\mathbb Z_2)\to \text{Tor}_1(H_{i-1}(X;\mathbb Z),\mathbb Z_2)\to0$$
Also there is a natural map from $H_i(X;\mathbb Z)\to H_i(X;\mathbb Z)\otimes\mathbb Z_2$ given by $g\mapsto g\otimes1$. This gives a map $\phi_i:H_i(X;\mathbb Z)\to H_i(X;\mathbb Z_2)$. I am interested in the object $\ker\phi_i$.
In particular for the case $i=1$, $\text{Tor}_1(H_0(X;\mathbb Z),\mathbb Z_2)=0$ so that $H_1(X;\mathbb Z)\otimes\mathbb Z_2\cong H_1(X;\mathbb Z_2)$. What is $\ker\phi_1$? Does it have some nice structure, for example is it free or trivial?
Thank you.