The following is the related problem:
Improper Rotations in Even Dimensions
I want the simpler explanation.
An improper rotation is rotation, followed by reflection in the plane perpendicular to the axis of rotation.
Consider an improper rotation in $2D$:
$$R_I=\begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix} $$
Obviously, $\text {det}( R_I)=-1$.
Consider the following simple case:
- $R_I\begin{bmatrix} 1\\ 0 \end{bmatrix}=\begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$. However, this is the same as $R\begin{bmatrix} 1\\ 0 \end{bmatrix}$, where $R$ is the proper rotation matrix.
$$R=\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$ - $R_I\begin{bmatrix} 0\\ 1 \end{bmatrix}=\begin{bmatrix} \sin\theta \\ -\cos\theta \end{bmatrix}$. and $R\begin{bmatrix} 0\\ 1 \end{bmatrix}=\begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}$. Both are $180^o$ out of phase.
I am confused about how to explain the definition of improper rotation by just two examples.