Let $(x,y,z)$ a coordinate system, $M=\mathbb{R}^3$ and we also denote by $x$ the first coordinate function : $x:M \rightarrow \mathbb{R},\; q=(a,b,c) \mapsto a$.
We have $dx:TM \rightarrow \mathbb{R},\; (q,v=(v_1,v_2,v_3)) \mapsto dx[q](v)=v_1$.
Let $f=dx[q]$.
We have $df:TM \rightarrow \mathbb{R},\; (p,u=(u_1,u_2,u_3)) \mapsto df[p](u)=u_1$.
How to get $d(dx) = df = 0$ ?