Is the following proposition true?
Let $f(x)$ be a real-valued function defined on $[a,b] \subset \mathbb{R}$, and suppose that the integral, $$ I = \int_a^b f(x) dx, $$ exists in the sense of Riemann integral. If $0< |I| < \infty$, then $$ 0< \frac{1}{|I|}\int_a^b |f(x)| dx<\infty. $$