$$\int_0^{\infty } \frac{1}{\left(1+x^2\right) (1+\tan (x))} \, dx=\\\int_0^{\infty } \left(\mathcal{L}_x\left[\frac{1}{1+\tan (x)}\right](t)\right) \left(\mathcal{L}_x^{-1}\left[\frac{1}{1+x^2}\right](t)\right) \,
dt=\Re\left(\int_0^{\infty } \frac{\left((1+i)+e^{\frac{\pi t}{4}} t B_i\left(\frac{i t}{2},0\right)\right) \sin (t)}{2 t} \, dt\right)=\\\frac{\pi }{4}+\int_0^{\infty } \frac{1}{2} e^{\frac{\pi t}{4}} \Re\left(B_i\left(\frac{i
t}{2},0\right)\right) \sin (t) \, dt=\\\frac{\pi }{4}+\sum _{k=1}^{\infty } \left(\frac{1}{2} e^{-2 k} \pi \sin \left(\frac{k \pi }{2}\right)+\cos \left(\frac{k \pi }{2}\right) (-\text{Chi}(2 k) \sinh (2 k)+\cosh (2 k)
\text{Shi}(2 k))\right)=\\\frac{\pi }{4}+\frac{e^2 \pi }{2 \left(1+e^4\right)}+\sum _{k=1}^{\infty } \left(\cos \left(\frac{k \pi }{2}\right) \cosh (2 k) \text{Shi}(2 k)-\cos \left(\frac{k \pi }{2}\right) \text{Chi}(2 k) \sinh (2
k)\right)=\\\frac{\pi }{4}+\frac{e^2 \pi }{2 \left(1+e^4\right)}+\sum _{k=1}^{\infty } \left(-\frac{1}{2} e^{2 k} \cos \left(\frac{k \pi }{2}\right) \text{Ei}(-2 k)+\frac{1}{2} e^{-2 k} \cos \left(\frac{k \pi }{2}\right)
\text{Ei}(2 k)\right)=\\\color{blue}{-\int_0^1 \left(\frac{e^4}{\left(1+e^4\right) x}-\frac{e^4}{\left(e^4+e^{4 x}\right) x}\right) \, dx+M}$$
where:$B_i$ is incomplete beta function,$\text{Chi}$ is hyperbolic cosine integral function ,$\text{Shi}$ is hyperbolic sine integral function, $\text{Ei}$ is the exponential integral function.
where: $\color{blue}{M}$ -(Mathematica code) is:
(2*(-1 + E^4)*EulerGamma + (1 + E^2)^2*Pi - Log[4] + I*E^6*Log[4] + E^4*Log[16] - Derivative[1, 0][PolyLog][0, (-I)/E^2] - E^4*Derivative[1, 0][PolyLog][0, (-I)/E^2] - Derivative[1, 0][PolyLog][0, I/E^2] - E^4*Derivative[1, 0][PolyLog][0, I/E^2] + Derivative[1, 0][PolyLog][0, (-I)*E^2] + E^4*Derivative[1, 0][PolyLog][0, (-I)*E^2] + Derivative[1, 0][PolyLog][0, E^8] + E^4*Derivative[1, 0][PolyLog][0, E^8] - E^4*Derivative[0, 1, 0][HurwitzLerchPhi][E^8, 0, 1/2] - E^8*Derivative[0, 1, 0][HurwitzLerchPhi][E^8, 0, 1/2] - I*E^6*Derivative[0, 1, 0][HurwitzLerchPhi][E^8, 0, 3/4] - I*E^10*Derivative[0, 1, 0][HurwitzLerchPhi][E^8, 0, 3/4] + I*E^10*Derivative[0, 1, 0][HurwitzLerchPhi][E^8, 0, 5/4] + I*E^14*Derivative[0, 1, 0][HurwitzLerchPhi][E^8, 0, 5/4])/(4*(1 + E^4))