The plane $ \zeta = \{(x,y,z) : x + y + z = 1\},$ is perpendicular to the vector
$\langle 1,1,1 \rangle$.
Two points on $\zeta$ are
$\mathbf O = \left( \dfrac 13,\ \dfrac 13,\ \dfrac 13 \right)
\text{ and }
\mathbf A = (0,0,1)$.
Since $\overrightarrow{\mathbf{OA}} = \dfrac 13 \langle -1, -1, 2 \rangle$,
the unit vector
$\overrightarrow u = \dfrac {1}{\sqrt 6} \langle -1, -1, 2 \rangle$
is parallel to the plane $\zeta$.
Since $\overrightarrow{\mathbf{OA}} \times
\langle 1,1,1 \rangle = \langle -1, 1, 0 \rangle$, then the unit vector
$\overrightarrow v = \dfrac{1}{\sqrt 2} \langle -1, 1, 0 \rangle$ is parallel to the plane $\zeta$ and
$\overrightarrow u \perp \overrightarrow v$.
So we can parameterize the plane, $\zeta$ as
$$\zeta(s,t)
= \mathbf O + s \overrightarrow u + t \overrightarrow v
= \left(
\dfrac 13 - \dfrac{s}{\sqrt 6} - \dfrac{t}{\sqrt 2},
\dfrac 13 - \dfrac{s}{\sqrt 6} + \dfrac{t}{\sqrt 2},
\dfrac 13 + \dfrac{2s}{\sqrt 6}
\right)$$
As ugly as the following looks
$$\left( \dfrac 13 - \dfrac{s}{\sqrt 6} - \dfrac{t}{\sqrt 2}\right)^2 +
\left( \dfrac 13 - \dfrac{s}{\sqrt 6} + \dfrac{t}{\sqrt 2}\right)^2 +
\left( \dfrac 13 + \dfrac{2s}{\sqrt 6}\right)^2 = 1 $$
It simplifies to $s^2 + t^2 = \dfrac 23$
So we let
$s = \sqrt{\dfrac 23}\cos \theta$ and
$t = \sqrt{\dfrac 23}\sin \theta$ and simplify. We get
$$\zeta(s,t)
= \left(
\dfrac 13 - \dfrac {\cos \theta}{3} - \dfrac{\sin \theta}{\sqrt 3},\;
\dfrac 13 - \dfrac {\cos \theta}{3} + \dfrac{\sin \theta}{\sqrt 3},\;
\dfrac 13 + \dfrac {2\cos \theta}{3}
\right)$$
a more intuitive answer
Let $S$ be the unit sphere $x^2 + y^2 + z^2 = 1$.
Let $P$ be the plane $x + y + z = 1$.
Let $C$ be the circle $C = S \cap P$.
The unit vector $U = \dfrac{1}{\sqrt 3} \langle 1,1,1 \rangle$ is perpendicular to $P$.
The line $x = y = z$
passes through, $(0,0,0)$, the center of $S$
passes through, $X$, the center of $C$
is perpendicular to $P$
The distance from $P$ to the center of $S$ is
$ \dfrac{\left| 0 + 0 + 0 - 1 \right|}{\sqrt{1^2 + 1^2 + 1^2}}
= \dfrac{1}{\sqrt 3}$.
The center of $C$ is at
$X = (0,0,0) + \dfrac{1}{\sqrt 3}U
= \left( \dfrac 13,\dfrac 13, \dfrac 13 \right)$.
The radius of $C$ is $r = \sqrt{1 - \dfrac 13} = \sqrt{\dfrac 23}$.
We need to find two points, $A$ and $B$, on $C$ such that
$\overrightarrow{XA} \perp \overrightarrow{XB}$.
$A = (1,0,0)$ is a point on $C$.
$\left \| \overrightarrow{XA} \right \| =
\left \| \left( \dfrac 23, -\dfrac 13, -\dfrac 13 \right) \right \| =
\sqrt{\dfrac 23}$
$U \times \sqrt{\dfrac 32} \; \overrightarrow{XA} =
\left( 0, \dfrac{1}{\sqrt 2}, -\dfrac{1}{\sqrt 2} \right)$
is a unit vector, in P, that is perpendicular to $\overrightarrow{XA}$.
$\overrightarrow{XB} =
\sqrt{\dfrac 23} \left( 0, \dfrac{1}{\sqrt 2}, -\dfrac{1}{\sqrt 2} \right) =
\left( 0, \dfrac{1}{\sqrt 3}, -\dfrac{1}{\sqrt 3} \right)$
\begin{align}
C &=
X
+ \cos \theta \; \overrightarrow{XA}
+ \sin \theta \; \overrightarrow{XB}
\\
C &= \left( \dfrac 13,\dfrac 13, \dfrac 13 \right)
+ \cos \theta \; \left( \dfrac 23, -\dfrac 13, -\dfrac 13 \right)
+ \sin \theta \; \left( 0, \dfrac{\sqrt 3}{3}, -\dfrac{\sqrt 3}{3} \right)
\\
C &= \dfrac 13(1 + 2 \cos \theta, \;
1 - \cos \theta + \sqrt 3 \sin \theta, \;
1 - \cos \theta - \sqrt 3 \sin \theta)
\end{align}