Let $M$ be a smooth manifold. I am trying to construct a (piecewise smooth) vector field $V$ along a curve $c$ that takes on prescribed values $K_{i}$ at times $t_{i}$. Say we construct V along $c|_{[t_{i},t_{i+1}]}$. I want to do the following:
Let $\tilde{K_{i}}$ and $\tilde{K_{i+1}}$ be the parallel translations of $K_{i}\in T_{c(t_{i})}M$ and $K_{i+1}\in T_{c(t_{i+1})}M$ along $c|_{[t_{i},t_{i+1}]}$. I define
$V(t)=(\frac{t}{t_{i}-t_{i+1}}+\frac{t_{i+1}}{t_{i+1}-t_{i}})\tilde{K_{i}}|_{c(t)} + (\frac{t}{t_{i+1}-t_{i}}-\frac{t_{i}}{t_{i+1}-t_{i}})\tilde{K_{i+1}}|_{c(t)}$ on $[t_{i},t_{i+1}]$. Does this seem correct?