0

Using Riemann Sums, how can I compute the integral $$\int_{0}^{2} 2^x dx$$

I don't know how can I take the Partition and then compute the sums , someone can help to understand this method of Riemann Sums please.

Thanks for your time.

Rosa Maria Gtz.
  • 3,886
  • 3
  • 29
  • 55
  • Arturo's answer to this question http://math.stackexchange.com/questions/163096/understanding-riemann-sums should be very helpful. – Dr_Be May 25 '16 at 06:55
  • Can you spell out your difficulty more clearly. You just divide the interval into $n$ equal parts and form a sum. Is that part clear? – almagest May 25 '16 at 06:57

1 Answers1

5

Since $\;f(x)=2^x\;$ is a continuous function it is Riemann integrable in any bounded interval and thus you can choose that interval's partition as you like and also the points in each subinterval where the function is going to be evaluated.

Thus, we can choose

$$P:=\left\{x_0=0<x_1=\frac2n<x_2=\frac4n<\ldots<x_k=\frac{2k}n<\ldots<x_n=\frac{2n}n=2\right\}$$

and the points $\;c_k=x_k\in[x_{k-1},x_k]\;$ , and form the Riemann sum

$$\sum_{k=0}^nf(c_k)(x_k-x_{k-1})=\frac2n\sum_{k=0}^n2^{\frac{2k}n}=\frac2n\sum_{k=0}^n\left(4^{1/n}\right)^k=$$

$$=\frac2n\cdot\frac{1-4^{\frac{n+1}n}}{1-4^{1/n}}=\frac2n\cdot\frac{1-e^{\frac{n+1}n\log4}}{1-e^{\frac1n\log4}}$$

Now, observe that

$$\lim_{n\to\infty}\frac1{n(1-e^{\frac1n\log4})}=\lim_{n\to\infty}\frac{\frac1n}{1-e^{\frac1n\log4}}\stackrel{\text{l'Hospital}}=\lim_{n\to\infty}\frac{-\frac1{n^2}}{\frac{\log4}{n^2}e^{\frac1n\log4}}=-\frac1{\log4}$$

and thus we get

$$\lim_{n\to\infty}\frac2n\cdot\frac{1-e^{\frac{n+1}n\log4}}{1-e^{\frac1n\log4}}=-\frac2{\log4}\left(1-4\right)=\frac3{\log2}$$

Checking:

$$\int_0^22^xdx=\left.\frac1{\log2}2^x\right|_0^2=\frac1{\log2}\left(4-1\right)=\frac3{\log2}$$

DonAntonio
  • 214,715