I am trying to solve an exercise asking to determine if $\mathfrak{so}(1,3)$ is simple or semisimple as real Lie algebra but I am having troubles.
My idea is to prove $\mathfrak{so}(1,3)$ is simple by using $\mathfrak{so}(1,3)\simeq \mathfrak{sl}(2,\mathbb{C})$ and $\mathfrak{sl}(2,\mathbb{C})=\mathfrak{su}(2)\oplus i\mathfrak{su}(2)$. Then according to my intuition ideals of $\mathfrak{sl}(2,\mathbb{C})$ should be of the form $\mathfrak{I}\oplus i\mathfrak{J}$, where $\mathfrak{I},\mathfrak{J}$ are ideals of $\mathfrak{su}(2)$, but I can't prove this rigorously. If this holds then I am able to conclude using that $\mathfrak{su}(2)$ is simple.
Thank you for any help