As you did, let us set $k:=BD/AB$.
If $1/2\le k\lt 1$, then letting $M,N$ be the midpoint of the side $AB,AC$ respectively, we have
$$2(DF+EF)\gt 2DE\ge 2MN=BC$$
In the following, we consider the case when $0\lt k\lt 1/2$.
By the law of cosines,
$$BC^2=AB^2+AC^2-2AB\cdot AC\cos\angle{BAC}\iff a^2=c^2+b^2+cb\tag1$$
By the way,
$$2(DF+EF)\ge BC$$
is equivalent to
$$2DF\ge BC-2EF$$
Since both sides are non-negative, this is equivalent to
$$4DF^2\ge BC^2-4BC\cdot EF+4EF^2$$
which can be written as
$$4BC\cdot EF\ge (BC+2DF)(BC-2DF)+4EF^2$$
Since $BC-2DF\ge 0$, the both sides are non-negative, and so this is equivalent to
$$(4BC\cdot EF)^2\ge ((BC+2DF)(BC-2DF)+4EF^2)^2,$$
i.e.
$$8BC^2\cdot EF^2-BC^4-16EF^4-16DF^4+8BC^2\cdot DF^2+32EF^2\cdot DF^2\ge 0$$
Using that
$$4DF^2=4k^2b^2+a^2-2k(a^2+b^2-c^2)$$
$$4EF^2=4k^2b^2+a^2-2k(a^2+b^2-c^2)$$
this is equivalent to
$$2a^2(4k^2b^2+a^2-2k(a^2+b^2-c^2))-a^4-(4k^2b^2+a^2-2k(a^2+b^2-c^2))^2-(4k^2c^2+a^2-2k(a^2+c^2-b^2))^2+2a^2(4k^2c^2+a^2-2k(a^2+c^2-b^2))+2(4k^2b^2+a^2-2k(a^2+b^2-c^2))(4k^2c^2+a^2-2k(a^2+c^2-b^2))\ge 0,$$
i.e.
$$16k^4(b^2-c^2)^2-32k^3(b^2-c^2)^2-8k^2(a^2(b^2+c^2)-2(b^2-c^2)^2)+8a^4k-3a^4\color{red}{\le} 0$$
Here, let
$$f(k):=16k^4(b^2-c^2)^2-32k^3(b^2-c^2)^2-8k^2(a^2(b^2+c^2)-2(b^2-c^2)^2)+8a^4k-3a^4$$
So, we want to prove that $f(k)\le 0$ for $0\lt k\lt 1/2$.
Now,
$$f'(k)=64(b^2-c^2)^2k^3-96(b^2-c^2)^2k^2-16(a^2(b^2+c^2)-2(b^2-c^2)^2)k+8a^4$$
$$\begin{align}f''(k)&=192(b^2-c^2)^2k^2-192(b^2-c^2)^2k-16(a^2(b^2+c^2)-2(b^2-c^2)^2)\\&=192(b^2-c^2)^2\left(k-\frac 12\right)^2-16a^2(b^2+c^2)-16(b^2-c^2)^2\end{align}$$
With $f''(1/2)\lt 0,f'(0)\gt 0$ and
$$f'\left(\frac 12\right)=8a^2(a^2-b^2-c^2)\gt 0$$
we know that $f(k)$ is increasing for $0\lt k\lt 1/2$, and using $(1)$ gives
$$f\left(\frac 12\right)=-3b^2c^2\lt 0$$
It follows from this that $f(k)\le 0$ for $0\lt k\lt 1/2$. $\blacksquare$