Note that $$(n+1)C_n=\binom{2n}{n}\qquad\qquad n\geq 0$$ are the Central Binomial Coefficients with the generating series representation
\begin{align*}
\sum_{n=0}^\infty\binom{2n}{n}x^n=\frac{1}{\sqrt{1-4x}}\qquad\qquad |4x|<1\tag{1}
\end{align*}
A generating function for $\{(n+2)C_{n+1}\}^\infty_{n=0}$ is therefore
\begin{align*}
\sum_{n= 0}^\infty& (n+2)C_{n+1}x^n\\
&=\sum_{n=1}^\infty (n+1)C_{n}x^{n-1}\\
&=\frac{1}{x}\sum_{n=1}^\infty \binom{2n}{n}x^{n}\\
&=\frac{1}{x}\left(\frac{1}{\sqrt{1-4x}}-1\right)
\end{align*}
Hint: The representation (1) is an application of the binomial series
\begin{align*}
(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n}x^n\qquad |x|<1, \alpha\in\mathbb{C}
\end{align*}
and the relation
\begin{align*}
\binom{-\frac{1}{2}}{n}=\frac{(-1)^n}{4^n}\binom{2n}{n}
\end{align*}