I was reading this answer, and the first sentence seemed more intuitive at first than after thinking through it:
If $\pmatrix{X\\ Y}$ is bivariate normal with mean $\pmatrix{0\\0}$ and covariance matrix $\Sigma=\pmatrix{1&\rho\\\rho&1}$, then $\pmatrix{U\\V}=\Sigma^{-1/2} \pmatrix{X\\Y}$ is bivariate normal with mean $\pmatrix{0\\0}$ and covariance matrix $\pmatrix{1&0\\ 0&1}.$ That is, $U$ and $V$ are independent, standard normal random variables.
At first I thought that $\Sigma^{-1/2}= \begin{pmatrix}1&&\frac{1}{\sqrt{\rho}}\\\frac{1}{\sqrt{\rho}}&&1\end{pmatrix}$.
But this is clearly not the case as the answers so far explain.
This mistake corrected, I still would like to understand why:
$\frac{1}{2 \sqrt{1-\rho^2}}\begin{pmatrix}\sqrt{1-\rho}+\sqrt{1+\rho} & \sqrt{1-\rho}-\sqrt{1+\rho} \\ \sqrt{1-\rho}-\sqrt{1+\rho} & \sqrt{1-\rho}+\sqrt{1+\rho}\end{pmatrix}\begin{pmatrix}\mathbf X\\ \mathbf Y\end{pmatrix}$ manages to de-correlate $\bf X$ and $\bf Y$.
Or, $\frac{1}{2 \sqrt{1-\rho^2}}\begin{pmatrix}\sqrt{1-\rho}+\sqrt{1+\rho} & \sqrt{1-\rho}-\sqrt{1+\rho} \\ \sqrt{1-\rho}-\sqrt{1+\rho} & \sqrt{1-\rho}+\sqrt{1+\rho}\end{pmatrix} \mathbf A^T$ with $\mathbf A$ corresponding to the two correlated values arranged in two columns.