The original post was to show that
$$\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\ge
\sqrt{a}+\sqrt{b}+\sqrt{c}+3.
$$
Observe that
\begin{align}
\frac{a}{b}+\frac{c}{a}&\ge2\sqrt{\frac{c}{b}}=2c\sqrt{a},\\
\frac{b}{a}+\frac{c}{b}&\ge2\sqrt{\frac{c}{a}}=2c\sqrt{b},\\
\frac{c}{a}+\frac{c}{b}&\ge2\sqrt{\frac{c^2}{ab}}=2c\sqrt{c}.
\end{align}
and similarly
\begin{align}
&\frac{a}{c}+\frac{b}{a}\ge2b\sqrt{a},
&\frac{b}{a}+\frac{b}{c}\ge2b\sqrt{b},
&&\frac{c}{a}+\frac{b}{c}\ge2b\sqrt{c};\\
&\frac{a}{b}+\frac{a}{c}\ge2a\sqrt{a},
&\frac{b}{c}+\frac{a}{b}\ge2a\sqrt{b},
&&\frac{c}{b}+\frac{a}{c}\ge2a\sqrt{c}.
\end{align}
So, by combining them, and use the fact that $a+b+c\ge 3\sqrt[3]{abc}=3$, we have
\begin{align}
3\left(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right)
&\ge 2(a+b+c)\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\\
&\ge 6\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right).
\end{align}
That is,
$$\frac{1}{2}\left(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right)\ge\sqrt{a}+\sqrt{b}+\sqrt{c}.\tag{1}$$ Next, we also have
\begin{align}
\frac{1}{2}\left(\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\right)
&= \frac{1}{2}\left[\left(\frac{b}{a}+\frac{a}{b}\right)
+\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\right]\\
&\ge \frac{1}{2}(2+2+2)\\
&=3.\tag{2}
\end{align}
Hence the result follows by combining $(1)$ and $(2)$.