2

I have been stuck on the 17th problem of the 3rd chapter from Marcus' Number Fields.

Let $K=\mathbb{Q}[\sqrt-23]$ , $L=\mathbb{Q}[\omega]$ where $\omega = e^{2.\pi.i/23} $ . Let $P$ be one of the primes of $R= \mathbb{A} \cap K$ lying over $2$ ; secifically take $P=(2,\theta)$ where $\theta=(1+ \sqrt-23)/2$. Let $Q$ be a prime of $\mathbb{Z}[\omega]$ lying over $P$.Show that

$(a)$ $Q$ is not principal.

$(b)$ If $2=\alpha\beta$ with $\alpha,\beta \in \mathbb{Z}[\omega]$, then $\alpha$ or $\beta$ is unit in $\mathbb{Z}[\omega]$.

I just follow the hints given there.I know that ideal class group of $\mathbb{Z}[\omega]$ is isomorphic to $\mathbb{Z}_3$. But I can't go further. Need some help.

Saikat
  • 457

0 Answers0