Definition
Let $p\in \mathbb{Z}$, $a<b \in \mathbb{R}$, and $X$, $Y$ be real Hilbert spaces. We define $$ W^{1,p}(a,b,X,Y) := \left\{ \varphi \, \Big| \, \varphi \in L^p(a,b,X),\, \varphi' \in L^p(a,b,Y) \right\}.$$
I am working with the Bidomain-Model which, over a time intervall [0,T], describes the electrical behaviour of the myocardial muscle considered as $\Omega \subset \mathbb{R}^3$.
This model has partial differential equations which involve the intra- and extracellular voltages, $u$ and $v$, which are functions of this type:
$$ u=u(t,x):[0,T]\times\Omega\rightarrow\mathbb{R}$$
$$ v=v(t,x):[0,T]\times\Omega\rightarrow\mathbb{R}$$
The model-equation which describes the relationship between these two is
$$ 0 = A_iu-Cv $$
with the operators $ A_i = -div(\sigma_i\nabla \cdot)$ and $ C = div\left((\sigma_i + \sigma_e)\nabla \cdot \right)$, for my pourposes.
As most of us know, if we use a computer to simulate the model, we would get approximations $\widetilde{u}$ and $\widetilde{v}$ and thus the norm
$$ \|A_i\widetilde{u}-C\widetilde{v} \|$$
becomes relevant.
In order to analytically represent and bound this residual, I am still missing to see in which space the functions $$\text{res}(t,x):=A_i\widetilde{u}(t,x)-C\widetilde{v}(t,x) \qquad \text{and}$$
$$\dot{\text{res}},$$
its time derivative, live and which norms this spaces have.
Is it true that $$ \text{res} : [0,T] \rightarrow H^1(\Omega) \quad \text{and}$$ $$ \dot{\text{res}} : [0,T] \rightarrow \left[H^1(\Omega) \rightarrow \mathbb{R}\right]\text{?}$$ Does $$ \text{res} \in L^{2} \left(0,T,H^1(\Omega)\right) \,\, \text{and}$$ $$ \dot{\text{res}} \in L^{2} \left(0,T,H^1(\Omega)'\right)\text{?} \quad$$ Thus following that $$ \text{res} \in W^{1,2}\left(0,T,H^1(\Omega),H^1(\Omega)'\right) \,\, \text{?}$$