Let
$g_m
=\int_0^1 \{x^{-1/m}\} dx
$.
I get
$g(m)
=\dfrac{m}{m-1}-\zeta(m)
$.
Here's how.
I want to partition
$[0, 1]$
into intervals
over which
$\{x^{-1/m}\}
$
is between two consecutive integers,
and then sum the integral
over these intervals.
So,
for each positive integer $n$,
I want
$n
= x^{-1/m}
$
or
$x
=\frac1{n^m}
$.
Let
$\begin{array}\\
g_{m, n}
&=\int_{\frac1{(n+1)^m}}^{\frac1{n^m}} \{x^{-1/m}\} dx\\
&=\int_{\frac1{(n+1)^m}}^{\frac1{n^m}} (x^{-1/m}-n) dx\\
&=\int_{\frac1{(n+1)^m}}^{\frac1{n^m}} x^{-1/m}dx
-n(\frac1{n^m}-\frac1{(n+1)^m})\\
&=\dfrac{x^{1-1/m}}{1-1/m}\big|_{\frac1{(n+1)^m}}^{\frac1{n^m}}
-(\frac{n}{n^{m}}-\frac{n}{(n+1)^{m}})\\
&=\dfrac{m}{m-1}x^{(m-1)/m}\big|_{\frac1{(n+1)^m}}^{\frac1{n^m}}
-(\frac{1}{n^{m-1}}-\frac{n+1-1}{(n+1)^{m}})\\
&=\dfrac{m}{m-1}(\frac1{n^{m-1}}-\frac1{(n+1)^{m-1}})
-(\frac{1}{n^{m-1}}-\frac{1}{(n+1)^{m-1}}+\frac{1}{(n+1)^{m}})\\
&=(\dfrac{m}{m-1}-1)(\frac1{n^{m-1}}-\frac1{(n+1)^{m-1}})
-\frac{1}{(n+1)^{m}}\\
&=\dfrac{1}{m-1}(\frac1{n^{m-1}}-\frac1{(n+1)^{m-1}})
-\frac{1}{(n+1)^{m}}\\
\end{array}
$
Therefore
$\begin{array}\\
g_m
&=\sum_{n=1}^{\infty} g_{m, n}\\
&=\sum_{n=1}^{\infty} (\dfrac{1}{m-1}(\frac1{n^{m-1}}-\frac1{(n+1)^{m-1}})
-\frac{1}{(n+1)^{m}})\\
&=\dfrac{1}{m-1}\sum_{n=1}^{\infty} (\frac1{n^{m-1}}-\frac1{(n+1)^{m-1}})
-\sum_{n=1}^{\infty}\frac{1}{(n+1)^{m}})\\
&=\dfrac{1}{m-1}-(\zeta(m)-1)\\
&=\dfrac{m}{m-1}-\zeta(m)\\
\end{array}
$
For $m=6$,
Wolfy says this is
$0.182656938015...
$,
so this has a good chance
of being correct,