Consider the function $f:[0,1]\to\mathbf{R}$, with
$$f(x)=\begin{cases}\frac{1}{b} ,\quad x=\frac{a}{b}\in[0,1]\cap\mathbf{Q}, \ (a,b)=1 \\ 0 , \quad x \in [0,1]\cap\mathbf{Q}^{c} \text{ or } x=0 \end{cases}$$
Prove that $f$ is continuous for every $r\in [0,1]\cap\mathbf{Q}^{c}$
Could I have some kind of hint or help?