$\sum_{n=1}^{\infty}\frac{1}{n(n+1)(n+2)}$
I know it converges via comparison test, but how to actually find the series value?
$\sum_{n=1}^{\infty}\frac{1}{n(n+1)(n+2)}$
I know it converges via comparison test, but how to actually find the series value?
Hint: $\dfrac{1}{n(n+1)(n+2)} = \dfrac{1}{2}\left(\dfrac{1}{n(n+1)} - \dfrac{1}{(n+1)(n+2)}\right)$