2

$$\int^{\frac{\pi}{4}}_{0} \frac{\cos 2x-1}{\cos 2x+1}dx$$

$$\int^{\frac{\pi}{4}}_{0} \frac{\cos 2x-1}{\cos 2x+1}dx=\int^{\frac{\pi}{4}}_{0} \frac{\cos 2x-1}{\cos 2x+1}\cdot\frac{\cos 2x-1}{\cos 2x-1}dx=\int^{\frac{\pi}{4}}_{0} \frac{\cos^2 2x-2\cos2x+1}{\cos^22x-1}dx$$

$$=\int^{\frac{\pi}{4}}_{0} \frac{\cos^2 2x-2\cos2x+1}{-\sin^22x}dx$$

$u=\cos2x$

$du=-2\sin2x$

Is this substitution is ok? or do dx must be in the numerator?

jameselmore
  • 5,306
gbox
  • 13,645

1 Answers1

4

Remember the bisection/duplication formulas and note that $$\cos2x=2\cos^2x-1=1-2\sin^2x,$$ so your integral is $$ \int_{0}^{\pi/4}-\frac{\sin^2x}{\cos^2x}\,dx = \int_{0}^{\pi/4}\frac{\cos^2x-1}{\cos^2x}\,dx = \int_{0}^{\pi/4}\left(1-\frac{1}{\cos^2x}\right)\,dx $$ Can you finish?

egreg
  • 244,946