let
$$f(x)= \begin{cases} x^2 \text{ if $x$ is rational}\\ 0 \text{ if $x$ is irrational} \end{cases} $$ let
$$g(x)=\begin{cases} \frac{1}{q} \text{ if $x=\frac{p}{q}$ where $(p,q)=1$}\\ 0 \text{ if $x$ is irrational} \end{cases} $$
Then which of the following holds?
a) $g$ is Riemann integrable but not $f$
b) both $f$ and $g$ Riemann integrable.
c) Riemann integral of $f$ is $0$
d) Riemann integral of $g$ is $0$