I want to prove the following equation : $$ (dm,dn) = d\cdot(m,n) $$ where $$ (m,n) = \gcd(m,n) \\ (dm,dn) = \gcd(dm,dn) $$ I tried this : $$ (dm,dn) \rightarrow \exists g_1 \in Z : g_1|dm, g_1|dn \rightarrow g_1|(dm\cdot x+dn\cdot y) \rightarrow g_1|d\cdot (mx+ny) \\ \rightarrow g_1=\frac{d\cdot (mx+ny)}{t} $$ And the same for $ (m,n)$ : $$ g_2=\frac{mx+ny}{t} $$ If i insert $g_1$ and $g_2$ i get : $$ d\cdot\frac{mx+ny}{t}=d\cdot \frac{mx+ny}{t} $$
Is this right?