$$\int \frac{dx}{(x^2+1)^2}$$
How should I approach this? Is there a general approach when the degree of the denominator>>numerator in this case $x^4>>1$?
$$\int \frac{dx}{(x^2+1)^2}$$
How should I approach this? Is there a general approach when the degree of the denominator>>numerator in this case $x^4>>1$?
Apply Integral Substitution: $\color{green}{x=\tan \left(u\right)\quad \:dx=\frac{1}{\cos ^2\left(u\right)}du}$ $$=\int \frac{\sec ^2\left(u\right)}{\left(\tan ^2\left(u\right)+1\right)^2}du=\int \frac{\sec ^2\left(u\right)}{\left(\sec ^2\left(u\right)\right)^2}du=\int \cos ^2\left(u\right)du=\int \frac{1+\cos \left(2u\right)}{2}du$$ Now it's easy...
Here you can split the integrand into a sum of rational functions of the form $$\frac{1}{(x^2+1)^2}=\frac{a}{i+x}+\frac{b}{-i+x}+\frac{p}{(i+x)^2}+\frac{q}{(-i+x)^2},$$ determine the constants $a,\,b,\,p,\,q$ and then integrate.