Intuitive approach when $l \in \mathbb{R}$:
let $a:= x- \lfloor x\rfloor$ , $n :=\lfloor x\rfloor $
$$f(x)=f(a+n) = f(a)+ \sum\limits_{k=0}^{n-1} f(a+k+1)- f(a+k)$$
$$\frac{f(x)}{x}=\frac{f(a)+ \sum\limits_{k=0}^{n-1} f(a+k+1)- f(a+k)}{x}$$
Since $ \lim\limits_{n \to \infty} f(x+1)- f(x) =l $ choose $N \in \mathbb {N}$ st for all $x>N$, $|f(x+1)- f(x)-l |< \epsilon$
$$= \frac{f(a)+ \sum\limits_{k=0}^{N-1} f(a+k+1)- f(a+k) }{x}+\frac{ \sum\limits_{k=N}^{n-1} f(a+k+1)- f(a+k) }{x} $$
Note that the first fraction goes to $0$ as $x$ goes to $\infty$ , the second fraction $\frac{n-1-N}{x}(l -\varepsilon )< \frac{ \sum\limits_{k=N}^{n-1} f(a+k+1)- f(a+k) }{x} < \frac{n-1-N}{x}(l +\varepsilon )$ as $x \to \infty$ the this goes to $l$
Rigorous proof:
Given $0<\varepsilon<1$ since $ \lim\limits_{n \to \infty} f(x+1)- f(x) =l $ then $\exists N \in \mathbb {N}$ s.t for all $x>N$, $|f(x+1)- f(x)-l |< \frac{\varepsilon}{3+|l|}$.
Since $f$ is bounded on $[0, N+1]$ then let $k = N(1+3 \sup {|f(x)|})$ where $ 0\le x\le N+1 $. Now choose $M$ such $\frac{k}{M} \le \frac{\varepsilon}{3+|l|}$
let $a:= x- \lfloor x\rfloor$ , $n :=\lfloor x\rfloor $
$$f(x)=f(a+n) = f(a)+ \sum\limits_{k=0}^{n-1} f(a+k+1)- f(a+k)$$
for all $x >M$
$$\frac{f(x)}{x}= \frac{f(a)+ \sum\limits_{k=0}^{n-1} f(a+k+1)- f(a+k) }{x}+\frac{ \sum\limits_{k=N}^{n-1} f(a+k+1)- f(a+k) }{x} $$
$$-\frac{\varepsilon}{3+|l|}+ \frac{n-1-N}{x}(l -\frac{\varepsilon}{3+|l|} )< \frac{f(x)}{x} <\frac{\varepsilon}{3+|l|} +\frac{n-1-N}{x}(l +\frac{\varepsilon}{3+|l|}3)$$
$$-\frac{\varepsilon}{3+|l|}+ \left (1- \frac{a+N}{x}\right )(l -\frac{\varepsilon}{3+|l|} )< \frac{f(x)}{x} <\frac{\varepsilon}{3+|l|} +\left (1- \frac{a+N}{x}\right )(l +\frac{\varepsilon}{3+|l|} )$$
$$l -3\frac{\varepsilon}{3+|l|} -|l| \frac{\varepsilon}{3+|l|} < \frac{f(x)}{x} < l +3\frac{\varepsilon}{3+|l|} +|l| \frac{\varepsilon}{3+|l|} $$
$$-(3 +|l|)\frac{\varepsilon}{3+|l|} < \frac{f(x)}{x}-l < (3 +|l|)\frac{\varepsilon}{3+|l|}$$
$$-\varepsilon<\frac{f(x)}{x}-l <\varepsilon$$
$$\left|\frac{f(x)}{x}-l \right|<\varepsilon$$