2

I’m trying to find a closed form for this integral.Any help is appreciated.Thanks $$I=\int_0^{1}\frac{{ \arcsin}({x^2})}{\sqrt{1-x^2}}dx$$

Quanto
  • 120,125
user178256
  • 5,783

3 Answers3

4

As already said in comments, it does not seem that the antiderivative of the integrand exists.

Concerning the integral, a CAS found something you will not like very much $$I=\frac{\pi }{4} \, _4F_3\left(\frac{1}{2},\frac{1}{2},\frac{3}{4},\frac{5}{4};1,\frac{3}{2},\frac{3}{ 2};1\right)$$ where appears the generalized hypergeometric function.

Numerically, $$I\approx 0.9552018064811796875605004$$

4

Substitute $x=\sin t$\begin{align} &\int_0^{1}\frac{{ \sin^{-1}}x^2}{\sqrt{1-x^2}}dx=\int_0^{\pi/2}\sin^{-1}(\sin^2t) \ \overset{ibp}{dt}\\=& \ \frac{\pi^2}4-\int_0^{\pi/2}\frac{2t \sin t}{\sqrt{2-\cos^2t}}\ \overset{ibp}{dt} = \frac{\pi^2}4-\int_0^{\pi/2}2\sin^{-1} \frac{\cos t}{\sqrt2}{dt}\\ =& \ \frac{\pi^2}4-2\int_0^{\pi/2}\int_0^{\frac1{\sqrt2}}\frac{\cos t}{\sqrt{1-s^2\cos^2t}}ds\ {dt}\\ = &\ \frac{\pi^2}4-2\int_0^{\frac1{\sqrt2}}\frac{\tanh^{-1}s}{s}ds\\ = &\ \frac{\pi^2}4-\bigg[\text{Li}_2\left(\frac1{\sqrt2} \right) -\text{Li}_2\left(-\frac1{\sqrt2} \right)\bigg] \end{align}

Quanto
  • 120,125
1

To make it more clear why this integral is so problematic, we can represent it as a double integral, using the definition of $\arcsin$:

$$\arcsin z=z \int_0^1 \frac{dy}{\sqrt{1-z^2y^2}}$$

Then the integral in the OP will have the form:

$$I=\int_0^{1}\frac{{ \arcsin}({x^2})}{\sqrt{1-x^2}}dx=\int_0^1 \int_0^1 \frac{x^2 dx dy}{\sqrt{1-x^2}\sqrt{1-y^2x^4}}=$$

$$=\int_0^1 \int_0^1 \frac{x^2 dx dy}{\sqrt{1-x^2}\sqrt{1-yx^2}\sqrt{1+yx^2}}=$$

$$=\int_0^1 \int_0^1 \frac{dx dy}{\sqrt{1-x^2}\sqrt{1-y^2x^4}}-\int_0^1 \int_0^1 \frac{\sqrt{1-x^2}dx dy}{\sqrt{1-y^2x^4}}$$

If we had $\arcsin x$ instead of $\arcsin x^2$, then we would at least be able to use complete elliptic integrals of the first and second kind.

But with $\arcsin x^2$ we don't get any nice special functions, thus, apparently, the generalized Hypergeometric function from Claude Leibovici's answer is the only way to go.

Yuriy S
  • 32,728